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Abstract

The construction industry facehallenges that include high workplace injuries and fatalities,
stagnant productivity, and skill shortage. Automation and Robotics in Construction (ARC) has
been proposed in the literature as a potential solution that makes machinery easier to collaborate
with, facilitates better decisiemaking, or enables autonomous behavior. However, there are two
primary technical challenges in ARC: 1) unstructured and featureless environments; and 2)
differences between the -dssigned and the dmiilt. It is thereforeimpossible to directly
replicate conventional automation methods adopted in industries such as manufacturing on
construction sites. In particular, two fundamental problems, pose estimation and scene

understanding, must be addressed to realize the fahpat of ARC.

This dissertation proposes a pose estimation and scene understanding framework that addresses
the identified research gaps by exploiting cameras, markers, and planar structures to mitigate the
identified technical challenges. A fast planeragtion algorithm is developed for efficient
modeling and understanding of built environments. A marker registration algorithm is designed
for robust, accurate, cesfficient, and rapidly reconfigurable pose estimation in unstructured

and featureless emenments. Camera marker networks are then established for unified and

systematic design, estimation, and uncertainty analysis in larger scale applications.

XVi



The poposed algorithms' efficiency hdmeen validated through comprehensive experiments.
Specificdly, the speed, accuracy and robustness of the fast plane extraction and the marker
registration have been demonstrated to be superior to existingotageart algorithms. These
algorithms have also been implemented in two groups of ARC applicatialesrtonstrate the
proposed framework's effectiveness, wherein the applications themselves have significant social
and economic value. The first group is related tesiin robotic machinery, including an
autonomous manipulator for assembling digital architee designs on construction sites to help
improve productivity and quality; and an intelligent guidance and monitoring system for
articulated machinery such as excavators to help improve safety. The second group emphasizes
humanmachine interaction to rke ARC more effective, including a mobile Building
Information Modeling and wafinding platform with discrete location recognition to increase
indoor facility management efficiency; and a 3D scanning and modeling solution for rapid and

costefficient dimansion checking and concise-lasilt modeling.
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Chapter 1

Introduction

"Lets start with the three fundamental Rules of Robdtictsaac Asimov

The objective of this research was develop, implement and validateovel computervision

based technologide providerapidly reconfigurable, infrastructuiedependent, robusteliable

and accurate6 DegreeOf-Freedom (DOF) pose (position and orientation) estimat®n
dimensional (3D)scenereconstruction andinderstandingolutions for variousperception and
navigaton applications of Automation and Robotics in Construction (ARC). These technologies
have the potential to help the construction industry improve safety, increase productivity and

accelerate the transitiaf skill-intensiveconstruction jobso knowledgeintensiveones

This researchs timely and critical The automatic perception and navigation abiligs been
highlighted as a basic capability that will impact the automatiomany industries including
constructionby the National Robotics InitiativéChristensen et al. 20Q9With such ability
constructionmachinescould be easier to control and collaborate witkguire less human
supervisionto avoid colligons, and even autonomously operate on complarksites Workers

and managers can also benefit from wearable and mobile devices with such ability to facilitate
construction, operation and management tasks. T¢wmdd alleviateissueslike relatively poor

safety, stagnant productivity, and skilled lalshortagein both constructionand similarly



affected imlustries such as manufacturimgining, and shipbuildingvhere robotics is poised to
revolutionize nexgeneration processes if key technical challenges related to localization,

navigation, manipuléon, obstacle avoidance, and collaboration can be successfully resolved.

Pose Estimation and Scene Understanding Algorithms
Marker Based Pose Estimation Camera Marker Network Fast Plane Extraction

Z=FX;YC)
;:argmirﬂf -FKYC u
X

2
3

Indoor Facility Management As-built BIM Generation

I u Y 4
Robotic Gonstruction Machinery

Human-in-the-Loop Gonstruction Automation

Figurel-1: Overview of the research.

As shown inFigure 1-1, the research objective washieved by firstnvestigating generglose
estimationand scene understandirdgorithms in computer vision and robotics, eithsr
exploring andadvancing existingonesor developingnew ones. These algorithmsere then

applied in the ARC domain texplore their poterai and validate their effectiveness.

1.1 Importance of the Research
The inability to automaticallyperceive surrounding environments aggtimate poses dither
|l arge scale mobil e mani p u-éffactos ofsm@anipllaoy armsoomp o n e |

underarriage tracks of mobile crane®r mobile devices used leyil engineering inspectoys



has a significant negative impact on the safety and productivity in industries such as
manufacturing, construction, and shipbuilding. This incapability also coresliatthe shortage

of skilled labor in these industries.

Firstly, high rates of wdplace injuries and fatalities in unstructured manufacturing
environments (e.g., construction sites, shipyards) have been affecting many industries.
According to the 2013 Census of Fatal Occupational Injuries (CFOI) r@portau of Labor
Statistics 2013)the construction industry had the largest number of fatal occupational injuries,
and in terms of rate ranked the fourth highest among all industries. Among all the causes for the
796 fatal injuries in the U.S. constructiordustry in 2013, the cause of being struck by an object

or equipment comprised 10 percent. This percentage is even higher in other industries such as
agriculture (19%), forestry (63%), and mining (23%). For example, besides directly causing fatal
injuries on worksites, mobile manipulators such as excavators can also inadvertently strike
buried utilities, thus disrupting life and commerce, and pose physical danger to workers,
bystanders, and building occupants. Such underground strikes happen with an faequagey

of about once per minute in the U.S., reported by the Common Ground Alliance, thesnation
leading organization focused on excavation safety. More specifically, excavation damage is the
third biggest cause of breakdowns in U.S. pipeline systaotunting for about 17% of all
incidents, leading to nearly 25 million dollars annual utility interruptidS DOT PHMSA

2015) Similar statistics abound in other related industries.

When mobile manipulators are contimsty aware of their poses in unstructured environments,
and are monitoring their surroundings such as recognizéagbyh u man wor ker sé po
actions, such machines can make decisions to avoid striking human workers, for example by

sending alerts to #ir operators or even temporarily taking over the controls to prevent accidents.



Thus, machine seliwareness can help decrease the possibilities of the abovementioned injuries
and fatalities and improve safety on worksites. Similarly, with continuousniggof the pose of

an endeffector (e.g., a bucket of an excavator), an intelligent excavator can perform collision

detection with an existing map of underground utilities and issue its operator a warning if the

endeffectofs distance to any buried utiles exceeds predefined thresholds.

In addition to the safety concerns, there are also increasing concerns of relatively stagnant
productivity rates and skilled labor shortage in manufacturing and construction industries. From
a recent survey, 83% U.S. @truction firms are reported to be in shortage of skilled workers
(Associated General Contractors of America 20Rijilarly, the construction sector in the
United Kingdom is reported to be in urgent need of 20% more skil#ters and thus 50%

more training provision by 2017, to deliver projects in plannfb@CI/KPMG 2014) For
example, earthwork is a typical affected activity. Currently precise excavation grade control is
provided by employing gqdecheckers to accompany excavators during appropriate operations.
Gradecheckers specialize in surveying and frequently monitor the evolving grade profile. The
evolving grade profile is compared to the target profile and this information is commurigated

the gradechecker to the excavator operator. The operator reconciles this information and adjusts
the digging strokes accordingly. This process is repeated until the target profiles are achieved.
Employing gradecheckers is not only dangerous but alssults in a significant loss in
excavation productivity due to frequent interruptions required for surveying the evolving profile

(Feng et al. 2015)

When a mobile manipulator can continuously track its-effiectofs poseand capture its 3D
surrounding®n worksites, such information can be combined together with the digital design of

a task, either to assist human operators to complete the task faster and more efficiently, or to



eventually finish the task autonomously. Foamle, an intelligent excavator being able to
track the pose of its bucket can guide its operator to dig trenches or backfill according to
designed profiles more easily and accurately with automatic -gtaelks. This can eventually

lead to fully autonomasin-situ machines, such as deployment of robotic arms or unmanned
aerial vehicles on construction sites and shipyards for autonomous assembly and fabrication
(Helm et al. 2012Willmann et al. 2012Feng et al. 2014\When such machines become more
intelligent, due to the transition from skidased to knowledgkased control, it can be expected

to save time in training operators, and thus to mitigate skilled labor shortages and also improve

productivity.

In summary the inability to automatically reconstruct and perceive surrounding scenes and
estimate posesot only affects the safety and productivity of the corresponding processes, but
also increases the demand for skilled labor in those industniggarticular, the inability to
estimate pose in unstructured environments and the lack of rapidly reconfigurable solutions are
primary obstacles that need to be overcome. There is thus a clear and critical need for
methodsto supportaccurate andreliable reattime scene understanding ar@DOF pose
estimation with rapid and flexible configurations for intelligent guidance and control of machines

and mobile devices adopted in relevant industries

1.2 Background of the Research

1.2.1 Perception and Navigation
In the general context of automation and robogtijgsse estimation and scene understanding
belong to perception and navigation problefaiception is the process of interpreting sensor

data in order to acquire information and develop knowledge of the envinbnamelnavigation



is the process of determining the current pose of an object of interest and discovering subsequent
actions leading the object to its target pose without collision with other objects. These two
definitions imply that perception and nauigam are very closely related to each other:
fulfillment of the goal of navigation (such as localization, path planning and collision avoidance)
usually requires support of perception to provide knowledge of the environment; on the other
hand, better perpéion results can be achieved with improved navigation since sensor data are

registered intomimprovedspatially consistent framework.

Many different types of sensors can be used for perception and navigation, ranging from Global
Position System (GPS) geives, Inertial Measurement Umit(IMU), sonas, and optical
encodes to generalized vision sensors including cammetdapth camera(such as stereo vision
camera, Microsoft Kinect, etc.) and laser range fingligdars. This research will mainly focus

on the generalized vision sensors because of both the richness of information that they can

capture and the various insufficiencies of other sensors.

Perception includes many different types of problems. To find out a certain object from vision
sensor datauch as images or point clouds, object detection and recogaitiomeeded. To
pinpoint the positioror identify the regiorof that objectin those dataobject segmentation is
necessary. If the vision sensor data are continuously updated, then objecgtisrequired. 3D
reconstruction can provide a 3D geometric description of the environment either from a sequence

of images or from registration of a collection of point clouds into a unified coordinate frame.

Many different research communities haveperst enormous efforts on perception.
Photogrammetry is probably one of the earliest, with focus on theories of 3D reconstruction from

aerial imagery and applications cartography. Computer vision sprouts from digital image



processing anduilds ondifferent perception research domains mentioned above. Robotics
researchers study visual perception to increase the automation level for machinery and robots.
Other industries such as manufacturing, automobile, augmented reality (AR) have all taken

advantage oprogress in perception.

Navigation in robotics often includes multiple goadese estimatiorlpcalization, path planning

and collision avoidance. Path planning often needs either 2D or 3D maps of the environment as
algorithm input Collision avoidance rires detection of obstacles in the environment. Yet
before these two goalppse estimation docalization has the first priority in order to achieve
successful navigation. The ability to recover a 'sg@rse (i.e., position and orientation within a
cetain coordinatdrameé is critical in many engineering domains such as AR, robotics, centext
aware computing, and computer vision. In AR, for example, this task is termed as the
Aregi str at(Azomdo99p moobdtiosmt hi s t ask i Simuttanemsse |l y r
Localizationand M p pi n g 0 (Kleid Bnd MOrray 20077hrun 2008) In computer vion,
AStruct uatei of MpalgdriBvhs are designed to solve tpioblem with little or no

prior knowledge about the environmg@turm and Triggs 199&navely et al. 200@8ao and
Savarese 2011 ontextaware engineering applicati®ralso face a similar problem where the
positioning part is more relevafkula et al. 2011)In cinematography, the problem is called

Amove matchingo.

1.2.2 Automation and Robotics in Construction

ARC is comprised ofwo major categories: hard and soft ARBalaguer 2004) Just as e
construction chore has physi cal(Evergtmapdd®Gloemt s an
1994) hard ARC focusemiainly on construction tasks which contain a large portion of physical

processing, such as robotics for brick laying, interior finishing, road paving, etc.; while soft ARC



concentrates mostly on construction tasks which typically require higher level atfonm
processing, such as document management, progress monitoring, safety monitoring, maintenance

and inspection, and dmuilt Building Information Modeling (BIM).

1.2.2.1 Challenges

Even though hard ARC had been actively studied in the 1990s, ARC researctehahifteng
towards the soft ARC side since the last decade. From a previous research tre(@ostudyet

al. 2010) about papers published in the proceedings of the International Symposium on
Automation and Robotics in Congttion (ISARC), a huge net decrease of hard ARC related
papers from about 70% to 35% was observEldis trend highlights the importance of
incorporating more soft ARC techniques into the hard ARC side, which means more automatic
information processing diiies should be developed for construction machinery or devices to
increase their level of automation and thus to make them easier (Balaguer 2004)This is
becausdhat on top ofperception and navigatiochallenges inérited from general automation

and robotics such asexd, accuracy and robustnessalgforithms, prt of the reasanfor this

decreaseould bethe following unique challenges in civil engineering and similar industries.

Unstructured and featureless envionment: unlike traditional manufacturing, where robotic
solutions benefit from the structured layout of the environment (e.g., factory assembly line),
construction robots face unique challenges that arise from the unstryatiyreamic, and
sometimes featelessenvironment of the work siteas shown inFigure 1-2, as well as the
uncertainty and evolving sequence of occurringsib® events. This challenges any intended
construction robots to not only replicate basic human mobiohalso be capable of accurately

and reliably sensing and adapting to environmental changes, and making decisions based on the



evolving state of the environmerExamples of ARC applications under such environments

include the orsite robotic assembly i@hapter sand the excavation monitoring @hapter 6

Figure1-2: Unstructured environments with repeated features or featuretesscteristics

Difference betweenthe asdesigred and the as-built: many buildings or civil infrastructures
have different extent of discrepancies between their designs admdiltagesults, since many
issues are not anticipated or simply unpredictable during the delage. This poses another
layer of challenges when trying to incorporating the design as prior knowledge for perception
and navigation algorithms for ARExamples of ARC applicationgrelated to such challenges

include facility management i@hapter 7and the aspuilt modeling inChapter 8

1.2.2.2 Principle and Methodology

Due to the abovementioned challenges, many perception and navigation algorithms designed for
traditional manufacturing robots cannot dieectly applied in ARC out of the box. When fully
autonomous construction robots seem to lack the required algorithmic foundations and practical

feasibilities, semautomation in construction enabled by Human Machine Interaction (HMI) is

! The two photos come froBuildipedia.com


http://buildipedia.com/knowledgebase/division-09-finishes/09-20-00-plaster-and-gypsum-board/09-29-00-gypsum-board/09-29-00-gypsum-board

identifiedtoben pr ef er ent i al tsnt atnhdea rmdd lzielde caomdHanaurc t i o r
C. 2011) Previous work about either interior finishing rol{giahane and Rosenfeld 2004b;

Navon 2000) where human operators need to manually transfer the robot between workstations,

or infrastructure inspection and maintenance rgkoh and Haas 2000where manual editing

and correction of automatic crack sealing error is ededhad followed this principle. This

research was also guided by the same principle, as shown in applications in later chapters.

Besides the HMI principle, to efficientlgddresshose challengegnany ARC methodologies

have been proposed as guidelinesidentify construction tasks and develop robotics and
automation solutions for them. Evergt®91)described a hierarchical taxonomy of construction
field operations, in which two important levels of construction opmraactivity and basic task,

are proposed. While many hard ARC research had focused on activity level automation, i.e.
whose output Airesults in a recognizabl e, con
di me n gkverettard Slocum 1994 verett(1991) proposed to conduct ARC research on

the level of the basic ta8kfundamental elements that build up construction activities, since
technology advancement on this level coédapplied to many different construction activities,

as opposed to automation on activity level. TesearcHollowed the same idea and advanded

by changingthe perspective of basic task level automation from construction worker to

autonomous/serauonomous constructiomachinery

In Everetts hierarchical taxonomy of construction field operati¢serett 1991)the basic task

leveld including connect, cover, cut, dig, finish, inspect, measure, place, plan, pogitiay, s

and spreadl is the one recommended for most easy introduction of construction automation.
Since basic task is the fundamental element of construction field work, successful automation on

one basic task could more easily benefit many different consinuattivities.
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However, when ARC researchers actually try to automate these basic tasks, one issue they will
encounter is likely to be the sybr o bl em over | ap. For example, to
task, the first question for the designer to ask gnh t be Ahow to identif
connectedo. Thus object <¢mieador thi®basicaaskd Onrtteec o g ni
ot her hand, to aut omat e t-pioblemiof objeci detecianiasd t a s k
recognition must be addresk since the robot needs to know what object needs to be cut.
Similarly, the question fAwhere and in what [

answered for the robot to automate both Aposi

It is thus interesting to netthat the basic tasks were summarized and abstracted from
construction activities from the perspective of a human worker or manager. It is indeed natural,
obvious and easy to assign commands made up from these basid¢otdskman workers
whereas commaisd for construction robots require specification of additional detailed

information in forms that machines understand.

Therefore, inspired by the modularization thinking in Evé&rethethodology and the
identification of overlapping suproblems, to efficietly automate basic tasks, their common
subproblems should be investigated and automated first. By further examining these sub
problems, one can realize that most of them are related to the information processing. Hence, the

construction basic task autotiven methodologyn this researcis as follows:

1. For each basic task, identify input and output information;
2. Find each commonly needed type of information and define an atomic function which
outputs that information;

3. Prioritize all atomic functions and setively automate them;

11



4. Automate or semautomate basic tasks which require information output by automated

atomic functions.

This methodology is in line with the previous trend analysis stating that more automatic
information processing abilities (the atm functions) must be possessed by construction
machinery and device§&uided by this methodology, firstly the commonly needed information is
analyzed. FronTable 1i 1 one can see that information such as position and orientatigett
identity and geometric description of the environment are commonly needed. Moreover almost
all autonomous mobile robots need this information to navigate themselves to their destination.
Thusthe corresponding atomic fations, i.e., pose estimaticand scene understanding, which

belongto perception andavigationfor ARC, are chosen to be investigated in this research

Tableli 1: Commonly needed information for each construction basic task

Basic Task Object Identity Position and/or Orientation Area/Region/Shape/Boundary
Connect a

Cover
Cut

Dig
Finish
Inspect
Measure
Place
Plan
Position
Spray
Spread

(Region to &

an an Qn
Q

(pose of c

an an

(Region to &
( Region to

an Qn an
an an

an

(pose of
(pose of

Qr QA O D O e An

nw m
an an
A~~~
X 0
D @
Q «©
O O
5 35
— —
O O
—~~ ~

1.2.3 Previous Work
In the ARC community,perceptionand navigation have been studied sitlee1990s(Everett
1991;Beliveau et al. 1996torsberg et al. 1998hohet and Rosenfeld 199Recently modern

computer vision techniques are being introduced into ARC community, including 3D

12



reconstruction from unoseted image sets for construction visualization and progress monitoring
(GolparvarFard et al. 2009)object detection and tracking for automatic productivity estimation
(Rezazadeh Azar and McCabe 2Q13pP human skeleton reconstruction for construction
occupational disease analygitan and Lee 2013and planar structure extraction from surveyed
point clouds of buildings for asuilt BIM (Zhang et al. 2012Building on recent advancements

in robotic navigation and control, researchers from robotics community also have been making
efforts towards autonomous robots that can perform certain simplified construsengiach as

structure or brick assembly by quadrotfirmdsey et al. 2012)Villmann et al. 2012)

Many researchers have realized that to increase the level of autonomy for construction robots,
the mapping and navigah abilities of the robot are essentiBeliveau et al. 199&-orsberg et

al. 1997;Shohet and Rosenfeld 199 Howeverthe accuracy of SLAM algorithm w&aound to

be insufficient at that time for many caéngtion tasks which require direct manipulation of
construction materials or too{§hohet and Rosenfeld 19985ome researchers even suggested
removing the autonomous navigation functionality and transferring robots betvoelestations
manually, then performing either a coatsdine calibration(Kahane and Rosenfeld 2004a)

carrying out an additional visiebased reatlime quality assurance st@davon 2000)

As core functions of either mapping or navigatiomo ttypes of pose estimation techniques have
been extensively studied, i.e. traditional nesualsensoibased methods, and newly emerging

visualsensothased methodbriefly introduced as follows.

1.2.3.1 Non-visual-sensorbased Methods
Among the first typeGPSis mainly used in outdoor open areas. GPS signals are easily blocked

by obstacles (e.g., buildings) that result in decreased accuracy or even failure of localization,
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known as t he A uCuiaand Ge 2003Goones 20&1) Wireless Local Area
Network (WLAN) based methods also require large number of footprints for calib(Azanet

al. 2005) Ultra-Wide Band (UWB) based methods generally have high(d@ster et al. 2008;
Khoury and Kamat 2009Radio Frequency ldentification (RFID) based methods usually depend
on large infrastructure (i.e., suffent RFID tags must be available) and also requires special tag
readergSanpechuda and Kovavisaruch 2088gdoh et al. 2012)IMU has tracking drift issues

that require error correctiofAkula et al. 2011) Most of these methods (except for IMU) are
dependent on certain installed tracking infrastructure. Besides, none of them can easily provide
direct orientation information (angular sensors in IMU such as gyroscope,aectimpass or
accelerometer have problems such as tracking drift or sensitivity to magnetic environment

changes), which makes them not optimal for the aforementioned industrial application scenarios.

1.2.3.2 Visual-sensorbased Methods

On the contrary, the secorngpe of methods directly outputs orientation along with position
information, by analyzing images captured from visseisors (e.g., cameras, lidars). Based on
their different assumptions/requirements on the surrounding environment, these algorithms can
be classified into two groups: known vs. unknown environrfiegptetit and Fua 2005Yhe only
unknown in the first group is the sensqose. While in the second group, both the environment
and the senstrpose have to be @stated, i.e. theSLAM problem (Thrun 2008) Generally,
SLAM-based methods are inherently infrastrucinceependent due to minimal assumptions.
Traditional 2D SLAM methods rely on lidar measurements, while the range limitgrabgven

the weight of lidars are disadvantages for their kmgpe outdoor applications. Although

emerging visual SLAM algorithm@avison et al. 2007Klein and Murray 2007Engel et al.
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2014)try to avoid these drawbacks by using ordinary cameras, they have limitations including

small range or inadequate accuracy and robustness.

On the other hand, the first group of methods assumes the environment is fully or partially
known, thus providing more accurateeliable and robust pose estimation. These pieces of
known appearance and geometry information areaied markers, which could be pdesigned
planar or nofplanar objects. Thus, they are also referred to as mbdsed pose estimation,
which have been extensively studied in many areas su&Rasand robotics(Olson 2011)
including contextaware computingFeng and Kamat 201Zeng and Kamat 2013nd insitu

digital fabrication(Feng et al. 2014)

1.2.4 Limitations of Previous Work
The current state of knowledge has three critical limitations that preclude the application of pose
estimationand scen@inderstandin@f construction machinery or devices increase their level

of autonomy:

1 Lack of Rapidly Reconfigurable ar@ensotinfrastructurelndependeniMethods
1 Lack ofReliableVisualSensoiBasedMethodsin Complex Environments

1 Lack of Systemati®esign anderror Analysis for Industrial Applications

1.2.4.1 Lack of Rapidly Reconfigurable an&ensorinfrastructure-IndependentMethods
Traditional nonvisualsensotbased methods have various limitations for lesgale mobile
manipulator applications, includingnadequate accuracy and robustness, high cost, slow
reconfiguration, and infrastructure dependency. Within this type of methods, robotic total
stations provide the most accurate (millimeter level) position estimation given a clear line of

sight. Howeve, it can only track one targeBD position at a time, which makes réiahe 6DOF
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pose estimation intractable, in addition to its relative high cost and payload. Real time kinematic
(RTK) GPS provides 3D position estimation at centimeter level accuracy,dts has relative

high cost and payload, and inherits the common GPS issues noted(Akole et al. 2011)

UWB methods provide suimeter level position accuracy, but are expensive to setup the
infrastructue. WLAN methods provide meter level position accuracy, but are slow to configure
and calibrate the infrastructure. Due to low positioning accuracy, orientation estimation is not
directly available using UWB or WLAN. Although IMU can be integrated for dagons, the
aforementioned tracking drift and magnetic environment sensitivity issues make it less robust
and appealing. Thus, it is clear that because of these limitationsyiquatsensoibased
methods are neaptimal for the pose estimation in guidanand control of large scale mobile
manipulators. To overcome such limitations, vissethisotbased methods are increasingly

studied and have the potential to bridge these gaps.

1.2.4.2 Lack of ReliableVisual-SensorBasedMethodsin Complex Environments

Visualsensorbased methods differ from other methods by the ability to instantaneously and
nortintrusively capture massive amounts of information as images of the environment. Thus,
these methods have the potential deondanrted ppeg
without any hardware infrastructure as needed in GPS (satellites), UWB, or WLAN, i.e., they are
inherently infrastructurindependent. However, the challenge in these methods is mainly the
robust and accurate interpretation of images. Ctunmsnal SLAM methods aoamonly assume

that:

1. The working environment lseabundant visual featuremd
2. This environment is completely or at least mostly static in bothasippee and geometric

structure.
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But these two assumptions do not normally hold in @em industrial environments. For
example, on construction sites, workers and machines are constantly and frequently moving,
which makes the sites highly dynamic instead of static. In addition, many of such surroundings
are featurdess in terms of visuahppearance, for instance, shipyards before finishing have
almost the same appearance everywhere on the walls and ceilings. Moreover, repeated visual
features commonly exist in such environments, which decreases the robustness of the
interpretation and heedampede the pose estimation accuracy. Besides, there are also challenges
such as the computational burden of {tgake image interpretation and the lack of scale
estimation in visual SLAM using a monocular camera (i.e., it estimates the tapusiionin

an undefined distance unit). Thus, it is clear that although the ‘@enabibased methods
(especially visual SLAM) have the potential to overcome limitations ofwsuatsensoibased
methods, presently they are still in the early research phasen@ndeadily feasible for

applications in complex industrial environments wharastruction machinergre operated.

1.2.4.3 Lack of Systemati®esign anderror Analysis for Industrial Applications

It is not sufficient to only estimate the pose of a key compookeatmobile manipulator. The
accuracy and uncertainty of the estimated pose is critical for the following reasons. Firstly, the
uncertainty provides a measure of the confidence level of the estimated pose, which is necessary
for many downstream applicatisife.g., deciding buffer size for collision avoidance). Secondly,

it serves as a tool for evaluating the stability of the pose estimation system under different system
configurations, and thus provides further guidance to avoid critical configurationkeddato

unstable pose estimation.

Current visuakensoibased methods normally have neither systematic uncertainty analysis nor

practical accuracy wevalwuation. Usual ly, Visu
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comparisons with GPS positioning a®gnd truth, while the orientation accuracies are omitted
or evaluated qualitatively. This is insufficient since the orientation accuracy also affects
downstream decisiomaking and GPS might not provide accurate enough ground truth in urban
areas, espedlg in GPSdenied regions. In addition, although a few maitk@sed methods
applied MonteCarlo simulation and made some empirical observafiomismann 2009)neither
visual SLAM nor markebased methods havestgmatic analysis in terms of the relationship

between estimation stability and system configuration to improve pose estimation system design.

1.3 Research Objectives

As previously stated, the overall objective of this research tawadeselop, implement and

validate novel computer vision based technologiedo provide rapidly reconfigurable,
infrastructureindependent, robustreliable and accurates DOF pose estimation, 3D scene
reconstruction and understanding solutidos,various applications of ARC. The meospecific

objectives of this research were as follows.

1 Developagorithms of reattime sceneunderstanding in 3[Point clouds to enable more
accurate 3D scene reconstruction, and to enable semantic recognition of different
geometric elements (e.g., walfloors, ceilings, stairs, etc.), thus facilitatingoasit BIM
generation and mobile robot perception.

91 Developalgorithms of accurateand robust eattime markerbasedpose stimation to
serve as core algorithmic componentsamera markemetworks.

1 Developalgorithmsof pose stimationusingcamera markenetworksthathas little or no
hardware infrastructure dependenagd thus can be rapidly applied in large scale

applications.
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1 Design and mplementgeneric software frameworls of the new methodsfor further
industrial applications and prototypes

1 Evaluate accuracy and precisiontloé new methodsin virtual and realvorld scenarios

1 Validate effectivenessand investigate potentiaf the new nethodsthroughindustrial
application pototypesin robotic construction machinery, including autonomaunsitu
robotic assemblyusing visionguided mobile manipulators wigitally fabricatecurved
walls more efficiently as well as intelligent excavation monitoring usingcamera
marker network for articulattmachine pose estimation to improve excavation safety and
productivity.

1 Validate effectiveness of the new methods through applicationscanstruction
automation with humaim-the-loop, including indoor facility management using mobile
devices and camemarker networks to increase inspection efficiency, as well as camera
marker networks assist&@iD scene reconstruction agdometic element recognition for

costefficientand more reliable and accuratebaslt BIM generation.

The end results of pursuinpdse objectives are three general scene understanding and pose
estimation algorithms, corresponding software frameworks for both soft and hard ARC

applications, anthefour specific ARC applications mentioned above.

1.4 Research Methodology

The methodology othis researcts first to investigate, adapt existing pose estimation and scene
understanding algorithms argkvelop new onesvhen necessayythen with the help of the
domain knowledge fromconstruction andcivil engineering, toapply those fundamental
algorithms in appropriatARC applications Figure 1-1 above shows the overview of such

algorithmsto-applications methodology in this research.
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One of the advantages of this methodology is that dwersideration othe prior knowledge

from the application domain, i.e., construction or civil engineerggsting general pose
estimation or scene understanding algorithms can be modified and adapted as needed to better fit
targetedapplication requiremeat Especially when algorithendeveloped for general computer

vision or robotics applicationsiake assumptions that do not holccanstruction scenarios, new

algorithms are welimotivated for development.

Anotheradvantage othis methodology is thathe newalgorithms developed irhis research are

not limited to only construction or civil engineering, kafplicablealsoin other engineering
domains.For example, the fast plane extraction can accelerate scene understanding for general
robotics problems such as poplane based SLAMTaguchi et al. 2013pr autonomous
unmanned aerial vehicle (UAV) control. The marker based pose estimation can improve the
stability of desktop ARThe camera marker network catsobe applied for jobsite machinery
productivity analysis.Thus, both ARC community and general computer vision and robotics

communities can benefit from these algorithms.

1.5 Dissertation Outline
This dissertation is a compilation of peewviewed scientific manuscripts which document this
researchof the development of novel scene understanding and pose estimation algorithms as

well as the designing and implementation of ARC applications adopting those algorithms.

There are mainly three parts in this dissertation. Rantluding chapter 2, 3 and de<ribe the
general scene understanding and pose estimation algorifiapter 2describes aovel scene
understanding algorithm thaktracts planes fromdepth image in realtime. Chapter Jescriles

a novel marker based pose estimation algorithm that enables fast, accurate and robust 6DOF pose
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estimation between a camera and a planar matkexpter 4escribes the abstract model of pose
estimation using a network of m@ras and markers and corresponding mathematical thémries

pose estimation and error analysis.

Part 1l, including chaptexr 5 and 6,describe two applications of pose estimation in robotic
construction machineryChapter 5describes an irsitu digital assembly application using a
vision-guided mobile robotic manipulatoChapter 6describesan articulated machine pose

estimation application using a camera marker network for excavation monitodmy@ance.

Part 1ll, including chapter7 and 8, describe two construction automation applications with
humanin-the-loop. Chapter 7 describes indoor facility management applications using a
dynamic camera marker network usimgrkers as spatial indices to link physical locations and
associatednformation. Chapter 8describes a reliable and accuratebadt BIM generation
application using an RGBD camera marker network to both reconstruct 3Dchmints and

recognize plane based 3D parametric models

The dissertation concludes wi@hapter 9which summarizes the significance and contributions

of this researchand discusses future work directioBsce each chapteroim 2 to 8 is written as

a selfcontained paper, some information appears in multiple chapters for the sake of
completenessAll chapters have been written such that they can be easily understood and
successfully replicated by a technically literate auckefrom diverse domains with basic

understandings &D computer vision and robotics.
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Part I: General Scene Understandingand Pose EstimatiorAlgorithms

"The world is flat.® Thomas Friedman

This part includes three fundamental algorithmsentered on planesaddressing scene
understanding and pose estimation probldmsnany cases 3D point closiaf the environment
arenot enough foroboticsapplications, sincéhey are generally noisyedundant, anavithout
explicit semantics of the scene. For compact serdantic3D modeling fitting primitivesin 3D

point clouds has attractadany research interests. In particular, planes are one of the most
important primitves, since mamade structuresonsist of many planes. Thus Chapter 2

describs afastplane extraction algorithiftom depth images.

Planes not only enable compact 3D modeling, but can also facilitate 6DOF pose estimation. This
is because the relative pose between a caplareeand a planevith a markeris encoded ira
so-called homography matrix, which can be estimated given geometric correspondences between
the two planesChapter 3investigatediwo major groups of methods establish omaintain

correspondences and developed a more accamdteobuspose estimatioalgorithm.

With more markers or cameras large scalgean observation network isaturally forned If
depth cameraare used3D planedecomea newkind of observationChapter 4abstracted such
networks in a unified framework, developed general solution pedormed systematic error

analysis.
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Chapter 2

Fast Plane Extraction in Organized Point Clouds

"Divide each difficulty into as many parts as is feasible and necessary to resolve it.

0 RenéDescartes

2.1 Intr oduction

As low-cost depth cameras and 3D sensors have emerged in the market, they have become a
popular choice in various robotics and computer vision applications. 3D point clouds obtained by
such sensors are generally noisy and redundant, and do mimtepsemantics of the scene. For
compact and semantic modeling of 3D scenes, primitive fitting to the 3D point clouds has
attracted a lot of research interests. In particular, planes are one of the most important primitives,

since marmade structures maintonsist of planes.

In this chapteran efficient plane extraction algorithm amalble to organized point clouds, such
as depth maps obtained by Kinect sensisrpresentedThis algorithm first constructs a graph

by dividing a point cloud into several nawerlapped regions with a uniform size in the image
space. The algorithm therefforms a bottorup, agglomerative hierarchical clustering (AHC)
on the graph: It repeats (fipding the region that has the minimum plane fittingam squared
error (MSE) and (2)merging it with one of its neighbors such that the merge results in the
minimum plane fitting MSE.It is shown that the clustering process can be done with the
complexity loglinear in the number of initial nodes, enabling rx@e plane extractionTo

refine the boundaries of the clustered regions, the clustering proceseusetbby pixelwise
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region growingln experimentsthis algorithmis compare with stateof-the-art algorithmsThis
algorithm achieves ed-time performance (runs over 35 Hz) 40 by 480 pixel depth maps,
while providing the accuracy comparable to ttateof-the-art algorithms. Some example
results are shown iRigure 2-1. Extracted planes are superimposed with different colors on the
RGB image (black means ngtanar region) White dash lines show the segmentation
boundaris before the regiegrow-based refinementnitial node size ofLO by 10 detects most

of the planes in the scene (ttgst), whose 3D view is shown (bott+left). Initial node size oft

by 4 reveals more segments in a smaller scale such as stairs aniedaldtgsright), while that

of 20 by 20focuses on major large planar structures such as floors and walls ({vinfitb)n

Figure2-1: Plane extraction results generated with different initial node.sizes

2.1.1 Contributions

There ardollowing contributiongor this chapter:

1 An efficient plane extraction algorithm based on agglomerative clusisrprgsented
1 The complexity of the clustering algorithimanalyzel and show to belog-linear in the

number of inital nodes.
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1 Realtime performances demonstratedvith the accuracy comparable to stafehe-art

algorithms.

The following sections of this chaptevill explain the details of ils proposedPlane Extraction
using Agglomerative Clusteringlubbed as PEAICSection2.2 will explain the related work on
plane extractionandrelated applications. Sectiéh3 will give an overview ofPEAC including

an analogy to line segment extraction and the diffesenden generalizing to three dimensions.
Section2.4 and2.5will explain the two main phases BEAC. ThePEAC'sperformancas then

demonstrated by various experiments in se@iénFinally conclusions are drawn in sectd.

2.2 RelatedWork

2.2.1 Plane Extraction

Several different algorithms have been proposed for plane extraction from 3D point clouds.
RANSAC-based methodéchnabel et al. 200ave been widely used. These methods usually
follow the paradigm of iteratively applying RANSAC algorithm on the data while removing
inliers corresponding to the currently found plane instance. SW¢¢SAC requires relatively

long computation time for random plane model selection and comparison, several different
variants were developed. Oehletral. (2011) performed Hough transformation and connected
component aalysis on the point cloud first as psegmentation and then applied RANSAC to
refine ech of the resulting "surfels” (2s p@40 by 480points). Several algorithm@aguchi et

al. 2013;Hulik et al. 2012} ee et al. 2012applied RANSAC on local regions of the point cloud
(which decreases the data size considered in each RANSAC run to increase speed) and then grew
the region from the locally found plane to the whole point cloud (-2guchi et al. 2013)r

0.1s(Hulik et al. 2012)per640by 480points; 0.03gLee et al. 2012per320by 240points).
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Regiongrow-based methods eanother popular choice&hheletal. (2003)and Poppingatal.

(2008) grew points by both poirtlane distance threshold and MSE threshol@g(@er 25344

points). Holzet al. (2012) grew poins by their sudice normal deviation (0.5s pé&40 by 480

points), which requires pgroint normal estimation. A similar but much slower variant is voxel

grow (Deschaud and Goulette 2010hgead of growing pointsGeogievet a. (2011) first

extracted line segments from each scan line of the data and then grew the line segments across

scan lines (0.05s per 18,100 points in MATLAB).

There are other methods which do not belong to the two grélghs et al.(2011)first clustered

the point cloud in the normal space and further clustered each group by its distance to the origin
(0.14s per 640 by 480 points). To avoid -peint normal estimation, Enjarini et g2012)
designed the gradient of depth feature for plane segmentation, which could be rapidly computed.
Graphbased segmentation using satfaptive threshold was also ug&trom et al. 2010yVang

et al. 2013)(0.17s per 148,500 points in Stranpaper). Althoughthe PEAC proposed in this
chapteralso uses a graph to represent data relatiodiffers from the previous methods as
follows: 1) no RGB information is used; 2) no gmint normal estimation is required; and more
importantly, 3) dynamic edge weights are used instead of static ones which fix the merging order

as in(Strom et al. 2010)

2.2.2 Applications

Planes have been used in various applicatiomebotics, computer vision, and 3D modeling.
Compact and semantic modeling of scenes provided by planes is useful in indoor and outdoor 3D
reconstruction, visualization, and Building Information Modeling (Bl{dhang et al. 2012)
Extracting a major plane is a common strategy for tadgemanipulation(Holz et al. 2011)

because it helps segment objects placed on the [Pdaees have been also used for SLAM
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(Weingarten and Siegwart 200Bathak et al. 2010frevor et al. 2012and place recognition

(FernandeaMoral et al. 2013systems as landmarks, because planes are more robust to noise

and morediscriminative than points. However, at least three planes whose normalR $pae
required to compute the BOF camera poseTo avoid the degeneracy due to the insufficient
number of planes, Tagucéial. (2013)used both points and planes as landmarks in their SLAM
system.SalasMoreno et al's SLAM system(2013)that uses objects as landmarks extracted a
ground plane and used it as a soft constraint to altignposes of objects with respect to the

ground planeAll of the above works can benefit frothefastplane extractiomn thischapter

2.3 Algorithm Overview

Figure 2-2 illustrates howPEAC processes each free of an organized pat cloud.Each frame

of an organized point cloud is processed from left to right. (a) shows the graph initialization with
each node colored by its normal; black dot and line showing graph node and edg8; bledk

@4 and red dot showing node rejecteddepth discontinuity, missing data, and too large plane
fitting MSE, respectively. (b) and (c) show the two core operations of the AHC. Regions with
random colors in (b) and (c) show graph nodes merged at least once. Black lines in (c) show all
edges cming out from the node A, in which the thick line shows the edge to the node B that
gives the minimum plane fitting MSE when merging the node A with one of its neighbors.
Colored regions in (d) show the extracted coarse planes, which are finally refirfey ifn

required by the application.

An organized point cloudis defined to be a set of 2D indexed 3D points
F={pi; €%, ¥;» zi)T} , 1=1---M,j =;-- N where the 2D indices¢i,j) and (i°1,j °1)

reflect the ® proximity relationship between pointg; andp,.,; , if they lie on the same

27



surface (this index spat®dubbedas image space). Usually it can be obtained from a depth map
produced by devices such as a Kingehsor, timef-flight camera, structured light scanning

system, and even rotating the scanning plane of a laser range finder.

Agglomerative Hierarchical Clustering :

|
‘ Repeat if merging MSE = threshold I Otherwise don’t merge:but extract A l

[ T i T e o i T T T T T
|

T Al *s%

|
| (b) Find node A (c) Merge with neighbor node B |  (d) Extract Coarse Planes (e) Refine details
! with min MSE which gives min merging MSE |

Figure2-2: The PEAC algorithm overview.

2.3.1 Line Segment Extraction as an Analogy
Before moving into the details dPEAC, a line segment extraction algbit called line
regressions briefly discussedas summarized ifNguyen et al. 20059nd implemented in April

Robotics Toolkit(Olson 2010) It is widely used for extracting line features from 2D point

sequences obtained from a laser range finder, and inspired us to generalize its idea to 3D case for

fast plane extraction. As illustrated Figure 2-3 (blue dots show the 2D pointsiycles labeled
with lettersshow the nodes in a linked ligt;ackets show the groups pbints represented by the
nodes;thick line indicates that merging nodgwith its left neighboref gives a smaller line
fitting MSE than merging it with its right neighbdr), everyW consecutive pointsW =3 in
this figure) in the sequeneee grouped into nodegorming a double linked list. Then AHC is
performed on this linked list by repeating (1) finding the ngdeith the minimum line fitting
MSE and (2) merging this nodg with either its left or right neighdy that gives the minimum

merging MSE. If the minimum merging MSE is larger than a predefined threshold, which can

2 Note that'node" and "segmeéhare usednterchangeably to represent a set of data points.
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usually be decided by the noise characteristics of the sensor, then the merging is canceled and the

node g can be ettacted as a line segment. When using a binary heap to find the minimum MSE
node, loglinear time complexityO(nlog n) can be achieved for this algorithm, wheras the

number of points in the sequence. Note thatpplying the idea of integral images, as used in
(Holzer et al. 2012Holz et al. 2011)merging two nodes and calculating the resulting line fitting

MSE become constant time operations.

2D point sequences
°® p q

{} Build double linked list
4
@HOHHDHeHD- D)

- AHC
AN v \ {( Al ~v— A >_L —
@by () (et (h) (i)

@ Extract line segments

. J A Al J

®

Figure2-3: Line regression algorithm.

2.3.2 Differences When Generalizing to 3D

Inspired by the use of polatneighborhood information given by the pdnorder of the
sequencepnewish to generalize the 2D line regression to 3D plkaxteaction in an organized
point cloud, where the neighborhood information is stored in the 2D indices. However, this

generalization is nontrivial, because of the following two major differences.

2.3.2.1 Non-Overlapping Nodes

As opposed to the line regressiontialinodes (and thus any two nodes during/after merging)

should have no identical points, i.e., for any two nodesB E F , B./&AB, = /. This
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requirement is due to the fact that after several merging steps, the 3D pdomgifgeto a

certain nodeB, will form an irregular shape instead of maintaining its initial rectangular shape in

the image space, as shownHigure 2-2(b). Thus, if allowing different nodes to have ideati
points, it is difficult to efficiently handle the overlapping points when merging two nodes, even
with the help of integral images. While in the line regression, merging two neighboring line
segments will still result in a line segment represented btad and end index in the point
sequence, which makes overlapping nodes feasible. It is important to notice that the overlapping
nodes enable the line regression algorithm to automatically split line segments at their
boundaries; since nodes containingints at different line segments tend to have larger line
fitting MSE than others (e.g., nodes d, andh in Figure2-3), their merging attempts will be
delayed and finally rejected. The nomerlapping requirement iREAC results in losing that
advantage of automatically detecting boundaries of pleBextion 2.4.1 will describe how to
overcome the disadvantage by removing bades in the initialization stefection2.5will also

describe a pixelvise region growing algorithm to refine the boundaries of planes.

2.3.2.2 Number of Merging Attempts

In the line regression, merging a node with its neighbardenstant time operation with at most

two merging attempts, either to its left or right neighbotthia generalized¢ase, the number of
merging attempts is larger, since nodes are initially connected to at most 4 neighbors to form a
graph, and after seval merging steps, they can be connected to a larger number of neighbors. In
section2.4.2 the averageumber of merging attempts PEACwill be experimentally analyze

and show that it stays small in practice; thereforee tmerging step can be done in a constant

time, resulting in the complexity dd(nlog n) similar to the line regression.
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2.4 Fast Coarse Segmentation

The PEACalgorithm consists of three major steps, as showkigare 2-2 and Algorithm 2 1:

The algorithm first initializes a graph and then performs AHC for extracting coarse planes,
which are finally refined. If the application only requires rough segmentation of planar regions,
e.g., detectingobjects in a point cloud, then the final refinement step may be skipped, which

could increae the frame rate to more tharHzOfor 640 by 48(oints.

First the notationsare clarified 7 denotes a complete frame of an organizedtpdoud ofM

rows andN columns.3,C represent coarse and refined segmentation respectively, i.e., each
element3, /C of B/C is a segmesdt a set of 3D pointp, ;. MeanwhileP, Pj are sets of
plane equations corresponding8oC , respectively. Also note that each nod®f a graphG is

a set of 3D points and each undirected edgealenotes the neighborhood of segments in

the image space.

Algorithm 2i 1: Fast Plane Extraction.

function FastPlaneExtractiotq
G « InitGraph(F)
(B,P) « AHClusterG)
(C,Pi) « Refine(B, P)
return (C,Pi)

2.4.1 Graph Initialization
As mentioned irsection2.3.2 PEAC has a requirement of naverlapping node initialization,
represented in line3 to 5 of Algorithm 2i 2. This step uniformly divides the point cloud into a

set of initial nodes of the sizd3 W in the image space. The requirement caliesC to lose
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the advantage of automatically detecting bouredaoif planes. To properly segment planes using
AHC under this restriction, the following types of nodes and corresponding acgesmoved
from the graph, whichs illustrated using an example iRigure 2-4 (6 oshowsnodes with
missing data point) xsbows nodes with depth discontinuity; black dot shows nodes with too
large plane fitting MSE; and B<shows nodes located at the boundary aedbetween two

connected planes)

1. Nodes Having High MSE:Non-planar regions lead to highame fitting MSE, whiclare
simply remove.

2. Nodes Containing Missing DataBecause of the limitation of the sensor, some regions
of the scene might not be sensed correctly, leading to missing data (e.g., the glass
window behind the shutter).

3. Nodes Containng Depth Discontinuities: These nodes contain two sets of points lying
on two surfaces that are not close in 3D but are close in the image space (usually one
surface partially occludes the other, e.g., the monitor occludes the wall behind). If
principle canponent analysis (PCA) is performed on points belonging to this node for
plane fitting, the fitted plane will be nearly parallel to the Jafesight direction and thus
still have a small MSE. Merging thisutlier" node with its neighbor node will haveda
effect on the plane fitting result because of the kmetiwn issue of oveweighting
outliers in leassquares methods.

4. Nodes at Boundary Between Two PlaneShese nodes contain two sets of points close
to each other in 3D but lying on two differencenda (e.g., the corner of the room),

which will decrease the plane fitting accuracy if they are merged to one of the planes.
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Algorithm 2i 2: Graph Initialization

1: function InitGraph(F )

2 G« (V« A E« A)

3: for i« 1,eMgdo > initialize node:

4 for j« 1,8l do

5 v« {p} EF ki HH L+ min(iHM),1 (j= YW +
1---,min(jW,N)

6: if RejectNodef; ; Yhen

7 v« A

8: V« VU{v;}

9: foreachv,; I V do > initialize edge:

10: if x RejectEdgel; ;,V;,V; 4 then

11: E« EU{v, .V, Vi ¥ &

12: if x RejectEdgeq ,;,V;,Y 4 then

13: E « EU{VI-l,j Yir Vi Vgl

14: return G

15: function RejectNode( )

16: if vcontains missing data pdinénreturn true

17:  elseif any pointp [ v is depth-discontinuous lwiny of its 4 neighbor pointeenreturn true
18:  elseif MSE{ )> T, thenreturn true

19:  elsereturn false

20: function RejectEdge(,v,,V, )

21 ifv,= Ay, = AU thenketurn true

22:  elseif included angle of plane fitting norhwd v, andv, is greater tindl ,,; thenreturn true
23:  elsereturnfalse

24: function MSE{ )
25: if v= Ahenreturn + o
26: return the plane fitting MSE for ail; ; [ v

D

The functionRejectNod@andRejectEdgen Algorithm 2i 2 are designed to reduce the influence

of these four types of bad tral nodes. Thé&kejectNoddunction iemoves the first three types of
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bad nodes (and thus the points inside) from the graph, whil&ejectEdgefunction is for

mitigating influence of the fourth type of bad nodes.
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Figure2-4: Examples of badhitial nodes.

It is interesting to note that thgain in this noroverlapping "disadvantages the avoidance of
perpoint normal estimationThis initialization step can be seen as treating all points inside a
node as if they have a common plane normdlis is an important reason fdhe speed
improvementof this methodcompared to other staté-the-art methods which often spend a

large portion of time in the normal estimation for each point.

2.4.2 Agglomerative Hierarchical Clustering

As shown inAlgorithm 2i 3, the AHC inthis PEAC algorithm is almost the same as that in the
line regression, except that it is operated on a graph instead of a double linkédstist.mint
heap data structuiie built for efficiently finding the nodevith the minimum plane fitting MSE.

It then repeatfinding a nodev that currently has the minimum plane fitting MSE among all

nodes in the graph and merging it with one of its neighbor noggsthat resuls in the

minimum merging MSE (recall that each node in the graph is a set of points; so the merging
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MSE is the plane fitting MSE of the union of the two sefs ). If this minimum merging MSE

exceeds some predefined thresh®|d. (not necessarily a fixed parameter as explained later in

section 2.4.3, then a plane segmentis found and extracted from the graph; otherwise the

merged nodeu is added back to the graph by edge contraction betweamd u, .

merge

Algorithm 2i 3: Agglomerative Hierarchical Clustering

1: function AHClusterG =(V,E))

2: Q « BuildMinMSEHeagV)

3: B« AP « A

4: while Q , Ado

5: v« PopMin@Q)

6: if vi Vthencontinue > vwas merged previously
T e AU A

8: foreachul N(v) *{u uv 1B do > for all neighbor nodesf \
9: U « UU V > merge attempt

10: if MSE (s )< MSEU, g JhEN

11 Upest € Uy Unerge € U et

12 if MSE (U, erge)> Tuse then > merge fail

13: if V| >Tyumthen > extract node/

14: B« BU{W} P « PU Planey )

15: E« ENCE(W:{uj ul NW > remove H edges tw

16: V« VN{V > reject small node

17: else > merge success

18: InsertQ, Upege )

19: E « EU{umergew| W NYU Ny IN{ v q,e}t} > edge contraction

NE(Ued) \ E(Y)
20: V <« VU{Upeed LV U, > update nodes
21: return (B,P)

22: function Planey )
23: return plane equation fitted from pointsyrby PCA
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average number of tests to find min merging MSE using different block sizes
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Figure2-5: Average number of merging testsrgrame

As mentioned irsection2.3.2 PEACrequires a larger number of merging attempts than the line
regression. However, it tusrout to be still quite efficient and the clustering process can be done

in O(nlog n) time in practiceFigure 2-5 experimentally shows the average number of merging

attempts during AHC per fran{during 2102 fraras 0f640by 480 Kinect point clouds As can

be seen, irrespective of the initial node size (and thus the initial number of nodes), this number
stays small. This may be explained by the fact that the graph constructedlfranithm 2i 3 is

a planar graphrom graph theory one knows that the average node degree of a planar graph is
strictly less than 6. Sinddeinitial graph is planar and merging nodes by edge contraction does
not change its planarity, during the whole procdssHC the average node degree is always less
than 6. Also, the plane fitting MSE of a large segment is larger than that of a smaller segment, if
errors are drawn from the same Gaussian distribution. Thus the AHC process tends to balance
the size of all thesegments, because it always tries to grow the size of the node with the
minimum plane fitting MSE and then switches to other smaller nodes. Therefore, it will not stick
to growing a large node (which implies large node degree since it has large bourttiaryise

the average number of merging tests will be much larger. Based on this observatidtoip@s
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in Algorithm 2i 3 can be done in a constant time irrespective of the initial number of nodes. The

O(nlog n) complexity only arises from maintaining the nfieap structure.

2.4.3 Implementation Details
There are several implementation details to improve the speed and accuracy for this fast coarse

segmentation:

1. A disjoint set data structure is used for tracking thietpmembership of each initial node
V;; during the node merging in AHC

2. As in the line regression, all nodes maintain the first and second order statistics of all the
belonging points, i.e.&x;, &y,;, & . & o fa @&, Y& 5%
such that meing two nodes and calculating its plane equation and MSE through PCA is
a constant time operation.

3. The function for determining the depth discontinuityRejectNodeof Algorithm 2i 2
depends on sensor noise characteristics. Foed sensors, the following functida
usedas suggested ifHolzer et al. 2012nd Point Cloud Library (PCE)

el - >2a 8.5
fpopy =& 17 312202 |

, (2.1)
{0 otherwise

The unit ofz here (and throughout thhapte) is millimeter and the parametar was

usedbetween 0.01 and 0.02

4. The thresholdT,,. for extracting segments is also sensor dependent. For Kinect, the

following equation adapted frofiKhoshelham and Elberink 2018)used:

3 http://www.pointclouds.org
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Tyse = (57 +)? (2.2)

where s =1.6 310° and ¢ between3 and 8 is used Similarly, T, can also be

changed deending on depth.

5. The initial node should be close to a square shape in the image spat¥,%.E., If a
strip-like shape is used, eith&w| H (e.g., W =20H =2) orHl W, the PCA on the
initial node will result in wrong plane normal direction which is usually almost
perpendicular to the linef-sight direction. Consequently the following AHC will fail to

segment planes correctly.

2.5 Segmentation Refinement

For many applications, the coarse plane segmentation obtained in the previous section might not
be enough, especially if the applications use the boumdafiglanes(Pathak et al. 2010;
FernandeaMoral et al. 2013pr require higher accuracy of the estimated plane equaifibis.

refinement on the coarse segmentai®ms performed

Three types of artifacts are expected in the coarse segmentation, as stogurd2-6 (where

the mttom row shows the carsponding refined segmentations)

1. Sawtooth: Usually at the boundary between two connected pldaeas, purple and
yellow segmentsf the topleft par.

2. Unused Data Points:Usually at the boundary of occlusion or missing data reds,
between lamp and wallf the topright par).

3. Over-Segmentation:Usually between two object's occlusion boundayg., urple and

red segmentsf the topright par).
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Algorithm 2i 4. Segmentation Refinement

e T e o e
a krwddkROo

o
o

17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:

function Refine,P )

Q« A > initialize queue of boundary poir
R« A > points to be refined

Gi« (V 4 A E «ihA) > graph for final merge
foreachB 1 B do > 1. erode each segment

R, « AR « RUR,
for each initial noce v, ; E B, do
if vy Uy g Uy Uy, B g then
B« B \V > erode border node
for each pointp,, on the boundary @, do
Enqueud, (p,,. k) )
if B, AhenVi «V U{B}
whileQ , Ado > 2. region grow fro baundary
(Ps1:K) « DequeueQ )
for pi; 1 {P.10Ps 0P sy 2P 5 3.0
ifp; I (B UR,) L‘DiSt(pi,j’ R)’>
OMSE(B, ) then
continue
if $l,p,; IR then
Ei« E U{B.nB} > connect nodes
if Distp,,P, ) <Distp, ;,P,)then
R« R \{pi,j}1 R « R U pi,}
Enqueud®, (p; ;. k) )
else
Ry « R U{p;}
Enqueud®, (p; ;. k) )
foreachR, |1 R do
B, « B, UR, > update each coarse segment
(C,Pi) « AHClusterG )i > 3final merge
return (C,P )
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Sawtooth artifacts cause small amount of outliers to be included in estimation, wharsed u
data points and ovesegmentation cause less inliers to be used. All of the artifacts produce

inaccurate plane boundaries and slightly decrease the accuracy of the estimated plane equation.

Figure2-6: Artifacts of coarse segmentatioasd corresponding refinement.

The solution to them is described Algorithm 2i 4. Since sawtooth artifacts are almost always
observed at the boundary regions ®f eroson of boundary regions of each segment can
effectively eliminate them (lineésto 12). Then pixelwise region growing is started from all new
boundary points to assign all unused data points to its closest plane that is extracted previously
(lines 13 to 27). During the region growing the-@gbnnected neighborhoods are discovered for

each segmenB, , which form a new graplsi. Finally applying AHC again on this very small

graph (usually less than 30 nodes) fikes oversegmentation artifact (lin2g).

2.6 Experiments and Discussion
To comprehensively evaluaBEACSs performance in terms of robustness, time, and accuracy,

three sets of experimenisas conducted as described in the following subsectionghis
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algorithm was implementedin C/C++. For PCA, the efficienB by 3 matrix eigenvalue
decomposition routine described (iKopp 2008f was usedAll experiments were conducted on
an ordinary laptop with Intel Core-Z760QM CPU of 2.4GHz and RAM of 8GB. No multi

threading or any other parallelism such as OpenMP or GPU was uséslimplementation.

2.6.1 Simulated Data

Similar to the influence of noise simulation (@eorgiev et al. 2011PEACSs robistnesswas
testedon a simulated depth map with 20 different levels of uniformly distributed noise of
magnitudeE =101, =0, »2((noise unit: mm; ground truth depth ranges from 138®6to
3704mm). After the noise waadded to the depth mapwas converted to an orgazed point

cloud and fed into thalgorithm (W =H =20,T,,.. 5G). As shown inFigure2-7, PEAC can

reliably detect all of the 4 planes fb= 0, »,14, and starts to ovesegment aftethat. Yet even

whenE=200nm PEACwas able to detect major planes in the scene.

Figure2-7: Plane extraction results on simulated data.

* Implementation available for downloadkttp://www.mpi-hd.mpg.de/personalhomes/globes/3x3/

41


http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/












































































































































































































































































































































































































































































