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Abstract 

The construction industry faces challenges that include high workplace injuries and fatalities, 

stagnant productivity, and skill shortage. Automation and Robotics in Construction (ARC) has 

been proposed in the literature as a potential solution that makes machinery easier to collaborate 

with, facilitates better decision-making, or enables autonomous behavior. However, there are two 

primary technical challenges in ARC: 1) unstructured and featureless environments; and 2) 

differences between the as-designed and the as-built. It is therefore impossible to directly 

replicate conventional automation methods adopted in industries such as manufacturing on 

construction sites. In particular, two fundamental problems, pose estimation and scene 

understanding, must be addressed to realize the full potential of ARC. 

This dissertation proposes a pose estimation and scene understanding framework that addresses 

the identified research gaps by exploiting cameras, markers, and planar structures to mitigate the 

identified technical challenges. A fast plane extraction algorithm is developed for efficient 

modeling and understanding of built environments. A marker registration algorithm is designed 

for robust, accurate, cost-efficient, and rapidly reconfigurable pose estimation in unstructured 

and featureless environments. Camera marker networks are then established for unified and 

systematic design, estimation, and uncertainty analysis in larger scale applications. 



xvii  

The proposed algorithms' efficiency has been validated through comprehensive experiments. 

Specifically, the speed, accuracy and robustness of the fast plane extraction and the marker 

registration have been demonstrated to be superior to existing state-of-the-art algorithms. These 

algorithms have also been implemented in two groups of ARC applications to demonstrate the 

proposed framework's effectiveness, wherein the applications themselves have significant social 

and economic value. The first group is related to in-situ robotic machinery, including an 

autonomous manipulator for assembling digital architecture designs on construction sites to help 

improve productivity and quality; and an intelligent guidance and monitoring system for 

articulated machinery such as excavators to help improve safety. The second group emphasizes 

human-machine interaction to make ARC more effective, including a mobile Building 

Information Modeling and way-finding platform with discrete location recognition to increase 

indoor facility management efficiency; and a 3D scanning and modeling solution for rapid and 

cost-efficient dimension checking and concise as-built modeling. 
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Chapter 1 

Introduction  

"Let's start with the three fundamental Rules of Robotics."ðIsaac Asimov 

The objective of this research was to develop, implement and validate novel computer vision 

based technologies to provide rapidly reconfigurable, infrastructure-independent, robust, reliable 

and accurate 6 Degree-Of-Freedom (DOF) pose (position and orientation) estimation, 3 

dimensional (3D) scene reconstruction and understanding solutions, for various perception and 

navigation applications of Automation and Robotics in Construction (ARC). These technologies 

have the potential to help the construction industry improve safety, increase productivity and 

accelerate the transition of skill-intensive construction jobs to knowledge-intensive ones. 

This research is timely and critical. The automatic perception and navigation ability has been 

highlighted as a basic capability that will impact the automation of many industries including 

construction by the National Robotics Initiative (Christensen et al. 2009). With such ability, 

construction machines could be easier to control and collaborate with, require less human 

supervision to avoid collisions, and even autonomously operate on complex worksites. Workers 

and managers can also benefit from wearable and mobile devices with such ability to facilitate 

construction, operation and management tasks. These could alleviate issues like relatively poor 

safety, stagnant productivity, and skilled labor shortage in both construction and similarly 
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affected industries such as manufacturing, mining, and shipbuilding, where robotics is poised to 

revolutionize next-generation processes if key technical challenges related to localization, 

navigation, manipulation, obstacle avoidance, and collaboration can be successfully resolved. 

 

Figure 1-1: Overview of the research. 

As shown in Figure 1-1, the research objective was achieved by first investigating general pose 

estimation and scene understanding algorithms in computer vision and robotics, either by 

exploring and advancing existing ones or developing new ones. These algorithms were then 

applied in the ARC domain to explore their potential and validate their effectiveness. 

1.1 Importance of the Research 

The inability to automatically perceive surrounding environments and estimate poses of either 

large scale mobile manipulatorsô key components (e.g., end-effectors of manipulator arms or 

undercarriage tracks of mobile cranes), or mobile devices used by civil engineering inspectors, 
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has a significant negative impact on the safety and productivity in industries such as 

manufacturing, construction, and shipbuilding. This incapability also contributes to the shortage 

of skilled labor in these industries. 

Firstly, high rates of workplace injuries and fatalities in unstructured manufacturing 

environments (e.g., construction sites, shipyards) have been affecting many industries. 

According to the 2013 Census of Fatal Occupational Injuries (CFOI) report (Bureau of Labor 

Statistics 2013), the construction industry had the largest number of fatal occupational injuries, 

and in terms of rate ranked the fourth highest among all industries. Among all the causes for the 

796 fatal injuries in the U.S. construction industry in 2013, the cause of being struck by an object 

or equipment comprised 10 percent. This percentage is even higher in other industries such as 

agriculture (19%), forestry (63%), and mining (23%). For example, besides directly causing fatal 

injuries on worksites, mobile manipulators such as excavators can also inadvertently strike 

buried utilities, thus disrupting life and commerce, and pose physical danger to workers, 

bystanders, and building occupants. Such underground strikes happen with an average frequency 

of about once per minute in the U.S., reported by the Common Ground Alliance, the nation's 

leading organization focused on excavation safety. More specifically, excavation damage is the 

third biggest cause of breakdowns in U.S. pipeline systems, accounting for about 17% of all 

incidents, leading to nearly 25 million dollars annual utility interruptions (US DOT PHMSA 

2015). Similar statistics abound in other related industries. 

When mobile manipulators are continuously aware of their poses in unstructured environments, 

and are monitoring their surroundings such as recognizing nearby human workersô poses and 

actions, such machines can make decisions to avoid striking human workers, for example by 

sending alerts to their operators or even temporarily taking over the controls to prevent accidents. 
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Thus, machine self-awareness can help decrease the possibilities of the abovementioned injuries 

and fatalities and improve safety on worksites. Similarly, with continuous tracking of the pose of 

an end-effector (e.g., a bucket of an excavator), an intelligent excavator can perform collision 

detection with an existing map of underground utilities and issue its operator a warning if the 

end-effector's distance to any buried utilities exceeds predefined thresholds. 

In addition to the safety concerns, there are also increasing concerns of relatively stagnant 

productivity rates and skilled labor shortage in manufacturing and construction industries. From 

a recent survey, 83% U.S. construction firms are reported to be in shortage of skilled workers 

(Associated General Contractors of America 2014). Similarly, the construction sector in the 

United Kingdom is reported to be in urgent need of 20% more skilled workers and thus 50% 

more training provision by 2017, to deliver projects in planning (LCCI/KPMG 2014). For 

example, earthwork is a typical affected activity. Currently precise excavation grade control is 

provided by employing grade-checkers to accompany excavators during appropriate operations. 

Grade-checkers specialize in surveying and frequently monitor the evolving grade profile. The 

evolving grade profile is compared to the target profile and this information is communicated by 

the grade-checker to the excavator operator. The operator reconciles this information and adjusts 

the digging strokes accordingly. This process is repeated until the target profiles are achieved. 

Employing grade-checkers is not only dangerous but also results in a significant loss in 

excavation productivity due to frequent interruptions required for surveying the evolving profile 

(Feng et al. 2015). 

When a mobile manipulator can continuously track its end-effector's pose and capture its 3D 

surroundings on worksites, such information can be combined together with the digital design of 

a task, either to assist human operators to complete the task faster and more efficiently, or to 
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eventually finish the task autonomously. For example, an intelligent excavator being able to 

track the pose of its bucket can guide its operator to dig trenches or backfill according to 

designed profiles more easily and accurately with automatic grade-checks. This can eventually 

lead to fully autonomous in-situ machines, such as deployment of robotic arms or unmanned 

aerial vehicles on construction sites and shipyards for autonomous assembly and fabrication 

(Helm et al. 2012; Willmann et al. 2012; Feng et al. 2014). When such machines become more 

intelligent, due to the transition from skill-based to knowledge-based control, it can be expected 

to save time in training operators, and thus to mitigate skilled labor shortages and also improve 

productivity. 

In summary, the inability to automatically reconstruct and perceive surrounding scenes and 

estimate poses not only affects the safety and productivity of the corresponding processes, but 

also increases the demand for skilled labor in those industries. In particular, the inability to 

estimate pose in unstructured environments and the lack of rapidly reconfigurable solutions are 

primary obstacles that need to be overcome. There is thus a clear and critical need for new 

methods to support accurate and reliable real-time scene understanding and 6DOF pose 

estimation with rapid and flexible configurations for intelligent guidance and control of machines 

and mobile devices adopted in relevant industries. 

1.2 Background of the Research 

1.2.1 Perception and Navigation 

In the general context of automation and robotics, pose estimation and scene understanding 

belong to perception and navigation problems. Perception is the process of interpreting sensor 

data in order to acquire information and develop knowledge of the environment; and navigation 
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is the process of determining the current pose of an object of interest and discovering subsequent 

actions leading the object to its target pose without collision with other objects. These two 

definitions imply that perception and navigation are very closely related to each other: 

fulfillment of the goal of navigation (such as localization, path planning and collision avoidance) 

usually requires support of perception to provide knowledge of the environment; on the other 

hand, better perception results can be achieved with improved navigation since sensor data are 

registered into an improved spatially consistent framework. 

Many different types of sensors can be used for perception and navigation, ranging from Global 

Position System (GPS) receivers, Inertial Measurement Units (IMU), sonars, and optical 

encoders to generalized vision sensors including cameras, depth cameras (such as stereo vision 

cameras, Microsoft Kinect, etc.) and laser range finders/lidars. This research will mainly focus 

on the generalized vision sensors because of both the richness of information that they can 

capture and the various insufficiencies of other sensors. 

Perception includes many different types of problems. To find out a certain object from vision 

sensor data such as images or point clouds, object detection and recognition are needed. To 

pinpoint the position or identify the region of that object in those data, object segmentation is 

necessary. If the vision sensor data are continuously updated, then object tracking is required. 3D 

reconstruction can provide a 3D geometric description of the environment either from a sequence 

of images or from registration of a collection of point clouds into a unified coordinate frame. 

Many different research communities have spent enormous efforts on perception. 

Photogrammetry is probably one of the earliest, with focus on theories of 3D reconstruction from 

aerial imagery and applications in cartography. Computer vision sprouts from digital image 
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processing and builds on different perception research domains mentioned above. Robotics 

researchers study visual perception to increase the automation level for machinery and robots. 

Other industries such as manufacturing, automobile, augmented reality (AR) have all taken 

advantage of progress in perception. 

Navigation in robotics often includes multiple goals: pose estimation, localization, path planning 

and collision avoidance. Path planning often needs either 2D or 3D maps of the environment as 

algorithm input. Collision avoidance requires detection of obstacles in the environment. Yet 

before these two goals, pose estimation or localization has the first priority in order to achieve 

successful navigation. The ability to recover a user's pose (i.e., position and orientation within a 

certain coordinate frame) is critical in many engineering domains such as AR, robotics, context-

aware computing, and computer vision. In AR, for example, this task is termed as the 

ñregistrationò problem (Azuma 1997). In robotics, this task is closely related to ñSimultaneous 

Localization and Mappingò (SLAM) (Klein and Murray 2007; Thrun 2008). In computer vision, 

ñStructure from Motionò (SfM) algorithms are designed to solve this problem with little or no 

prior knowledge about the environment (Sturm and Triggs 1996; Snavely et al. 2006; Bao and 

Savarese 2011). Context-aware engineering applications also face a similar problem where the 

positioning part is more relevant (Akula et al. 2011). In cinematography, the problem is called 

ñmove matchingò. 

1.2.2 Automation and Robotics in Construction 

ARC is comprised of two major categories: hard and soft ARC (Balaguer 2004). Just as ñevery 

construction chore has physical components and information componentsò (Everett and Slocum 

1994), hard ARC focuses mainly on construction tasks which contain a large portion of physical 

processing, such as robotics for brick laying, interior finishing, road paving, etc.; while soft ARC 
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concentrates mostly on construction tasks which typically require higher level information 

processing, such as document management, progress monitoring, safety monitoring, maintenance 

and inspection, and as-built Building Information Modeling (BIM). 

1.2.2.1 Challenges 

Even though hard ARC had been actively studied in the 1990s, ARC research has been shifting 

towards the soft ARC side since the last decade. From a previous research trend study (Son H. et 

al. 2010) about papers published in the proceedings of the International Symposium on 

Automation and Robotics in Construction (ISARC), a huge net decrease of hard ARC related 

papers from about 70% to 35% was observed. This trend highlights the importance of 

incorporating more soft ARC techniques into the hard ARC side, which means more automatic 

information processing abilities should be developed for construction machinery or devices to 

increase their level of automation and thus to make them easier to use (Balaguer 2004). This is 

because that on top of perception and navigation challenges inherited from general automation 

and robotics such as speed, accuracy and robustness of algorithms, part of the reasons for this 

decrease could be the following unique challenges in civil engineering and similar industries. 

Unstructured and featureless environment: unlike traditional manufacturing, where robotic 

solutions benefit from the structured layout of the environment (e.g., factory assembly line), 

construction robots face unique challenges that arise from the unstructured, dynamic, and 

sometimes featureless environment of the work site, as shown in Figure 1-2, as well as the 

uncertainty and evolving sequence of occurring on-site events. This challenges any intended 

construction robots to not only replicate basic human motion, but also be capable of accurately 

and reliably sensing and adapting to environmental changes, and making decisions based on the 
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evolving state of the environment. Examples of ARC applications under such environments 

include the on-site robotic assembly in Chapter 5 and the excavation monitoring in Chapter 6. 

 

Figure 1-2: Unstructured environments with repeated features or featureless
1
 characteristics. 

Difference between the as-designed and the as-built:  many buildings or civil infrastructures 

have different extent of discrepancies between their designs and as-built results, since many 

issues are not anticipated or simply unpredictable during the design phase. This poses another 

layer of challenges when trying to incorporating the design as prior knowledge for perception 

and navigation algorithms for ARC. Examples of ARC applications related to such challenges 

include facility management in Chapter 7 and the as-built modeling in Chapter 8. 

1.2.2.2 Principle and Methodology 

Due to the abovementioned challenges, many perception and navigation algorithms designed for 

traditional manufacturing robots cannot be directly applied in ARC out of the box. When fully 

autonomous construction robots seem to lack the required algorithmic foundations and practical 

feasibilities, semi-automation in construction enabled by Human Machine Interaction (HMI) is 

                                                 
1
 The two photos come from Buildipedia.com. 

http://buildipedia.com/knowledgebase/division-09-finishes/09-20-00-plaster-and-gypsum-board/09-29-00-gypsum-board/09-29-00-gypsum-board
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identified to be ñpreferential in the mobile and non-standardized construction environmentò (Han 

C. 2011). Previous work about either interior finishing robot (Kahane and Rosenfeld 2004b; 

Navon 2000), where human operators need to manually transfer the robot between workstations, 

or infrastructure inspection and maintenance robot (Kim and Haas 2000), where manual editing 

and correction of automatic crack sealing error is needed, had followed this principle. This 

research was also guided by the same principle, as shown in applications in later chapters. 

Besides the HMI principle, to efficiently address those challenges, many ARC methodologies 

have been proposed as guidelines to identify construction tasks and develop robotics and 

automation solutions for them. Everett (1991) described a hierarchical taxonomy of construction 

field operations, in which two important levels of construction operation, activity and basic task, 

are proposed. While many hard ARC research had focused on activity level automation, i.e. 

whose output ñresults in a recognizable, completed unit of work with spatial limits and/or 

dimensionsò (Everett and Slocum 1994), Everett (1991) proposed to conduct ARC research on 

the level of the basic taskðfundamental elements that build up construction activities, since 

technology advancement on this level could be applied to many different construction activities, 

as opposed to automation on activity level. This research followed the same idea and advanced it 

by changing the perspective of basic task level automation from construction worker to 

autonomous/semi-autonomous construction machinery. 

In Everett's hierarchical taxonomy of construction field operations (Everett 1991), the basic task 

levelðincluding connect, cover, cut, dig, finish, inspect, measure, place, plan, position, spray 

and spreadðis the one recommended for most easy introduction of construction automation. 

Since basic task is the fundamental element of construction field work, successful automation on 

one basic task could more easily benefit many different construction activities. 
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However, when ARC researchers actually try to automate these basic tasks, one issue they will 

encounter is likely to be the sub-problem overlap. For example, to automate the ñconnectò basic 

task, the first question for the designer to ask might be ñhow to identify the objects to be 

connectedò. Thus object detection and recognition is a sub-problem for this basic task. On the 

other hand, to automate the ñcutò basic task, the same sub-problem of object detection and 

recognition must be addressed since the robot needs to know what object needs to be cut. 

Similarly, the question ñwhere and in what pose should the object be positionedò must be 

answered for the robot to automate both ñpositionò and ñplaceò basic tasks. 

It is thus interesting to note that the basic tasks were summarized and abstracted from 

construction activities from the perspective of a human worker or manager. It is indeed natural, 

obvious and easy to assign commands made up from these basic tasks to human workers, 

whereas commands for construction robots require specification of additional detailed 

information in forms that machines understand. 

Therefore, inspired by the modularization thinking in Everett's methodology and the 

identification of overlapping sub-problems, to efficiently automate basic tasks, their common 

sub-problems should be investigated and automated first. By further examining these sub-

problems, one can realize that most of them are related to the information processing. Hence, the 

construction basic task automation methodology in this research is as follows: 

1. For each basic task, identify input and output information; 

2. Find each commonly needed type of information and define an atomic function which 

outputs that information; 

3. Prioritize all atomic functions and selectively automate them; 
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4. Automate or semi-automate basic tasks which require information output by automated 

atomic functions. 

This methodology is in line with the previous trend analysis stating that more automatic 

information processing abilities (the atomic functions) must be possessed by construction 

machinery and devices. Guided by this methodology, firstly the commonly needed information is 

analyzed. From Table 1ï1 one can see that information such as position and orientation, object 

identity and geometric description of the environment are commonly needed. Moreover almost 

all autonomous mobile robots need this information to navigate themselves to their destination. 

Thus the corresponding atomic functions, i.e., pose estimation and scene understanding, which 

belong to perception and navigation for ARC, are chosen to be investigated in this research. 

Table 1ï1: Commonly needed information for each construction basic task. 

1.2.3 Previous Work 

In the ARC community, perception and navigation have been studied since the 1990s (Everett 

1991; Beliveau et al. 1996; Forsberg et al. 1997; Shohet and Rosenfeld 1997). Recently modern 

computer vision techniques are being introduced into ARC community, including 3D 

Basic Task Object Identity  Position and/or Orientation Area/Region/Shape/Boundary 

Connect ã ã  

Cover ã  ã (Region to be covered) 

Cut ã ã (pose of cutting tool)  

Dig  ã ã (Region to be dug) 

Finish   ã (Region to be finished) 

Inspect ã ã  

Measure ã ã  

Place ã ã  

Plan  ã  

Position ã ã  

Spray  ã (pose of spraying tool) ã (Region to be sprayed) 

Spread  ã (pose of spreading tool) ã (Region to be spread) 
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reconstruction from unordered image sets for construction visualization and progress monitoring 

(Golparvar-Fard et al. 2009), object detection and tracking for automatic productivity estimation 

(Rezazadeh Azar and McCabe 2012), 3D human skeleton reconstruction for construction 

occupational disease analysis (Han and Lee 2013), and planar structure extraction from surveyed 

point clouds of buildings for as-built BIM (Zhang et al. 2012). Building on recent advancements 

in robotic navigation and control, researchers from robotics community also have been making 

efforts towards autonomous robots that can perform certain simplified construction tasks, such as 

structure or brick assembly by quadrotors (Lindsey et al. 2012; Willmann et al. 2012). 

Many researchers have realized that to increase the level of autonomy for construction robots, 

the mapping and navigation abilities of the robot are essential (Beliveau et al. 1996; Forsberg et 

al. 1997; Shohet and Rosenfeld 1997). However, the accuracy of SLAM algorithm was found to 

be insufficient at that time for many construction tasks which require direct manipulation of 

construction materials or tools (Shohet and Rosenfeld 1997). Some researchers even suggested 

removing the autonomous navigation functionality and transferring robots between workstations 

manually, then performing either a coarse-to-fine calibration (Kahane and Rosenfeld 2004a) or 

carrying out an additional vision-based real-time quality assurance step (Navon 2000). 

As core functions of either mapping or navigation, two types of pose estimation techniques have 

been extensively studied, i.e. traditional non-visual-sensor-based methods, and newly emerging 

visual-sensor-based methods, briefly introduced as follows. 

1.2.3.1 Non-visual-sensor-based Methods 

Among the first type, GPS is mainly used in outdoor open areas. GPS signals are easily blocked 

by obstacles (e.g., buildings) that result in decreased accuracy or even failure of localization, 
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known as the ñurban canyonò effect (Cui and Ge 2003; Groves 2011). Wireless Local Area 

Network (WLAN) based methods also require large number of footprints for calibration (Aziz et 

al. 2005). Ultra-Wide Band (UWB) based methods generally have high cost (Teizer et al. 2008; 

Khoury and Kamat 2009). Radio Frequency Identification (RFID) based methods usually depend 

on large infrastructure (i.e., sufficient RFID tags must be available) and also requires special tag 

readers (Sanpechuda and Kovavisaruch 2008; Andoh et al. 2012). IMU has tracking drift issues 

that require error correction (Akula et al. 2011). Most of these methods (except for IMU) are 

dependent on certain installed tracking infrastructure. Besides, none of them can easily provide 

direct orientation information (angular sensors in IMU such as gyroscope, electrical compass or 

accelerometer have problems such as tracking drift or sensitivity to magnetic environment 

changes), which makes them not optimal for the aforementioned industrial application scenarios. 

1.2.3.2 Visual-sensor-based Methods 

On the contrary, the second type of methods directly outputs orientation along with position 

information, by analyzing images captured from visual-sensors (e.g., cameras, lidars). Based on 

their different assumptions/requirements on the surrounding environment, these algorithms can 

be classified into two groups: known vs. unknown environment (Lepetit and Fua 2005). The only 

unknown in the first group is the sensor's pose. While in the second group, both the environment 

and the sensor's pose have to be estimated, i.e. the SLAM problem (Thrun 2008). Generally, 

SLAM-based methods are inherently infrastructure-independent due to minimal assumptions. 

Traditional 2D SLAM methods rely on lidar measurements, while the range limits, cost and even 

the weight of lidars are disadvantages for their large-scale outdoor applications. Although 

emerging visual SLAM algorithms (Davison et al. 2007; Klein and Murray 2007; Engel et al. 



15 

2014) try to avoid these drawbacks by using ordinary cameras, they have limitations including 

small range or inadequate accuracy and robustness. 

On the other hand, the first group of methods assumes the environment is fully or partially 

known, thus providing more accurate, reliable and robust pose estimation. These pieces of 

known appearance and geometry information are so-called markers, which could be pre-designed 

planar or non-planar objects. Thus, they are also referred to as marker-based pose estimation, 

which have been extensively studied in many areas such as AR and robotics (Olson 2011), 

including context-aware computing (Feng and Kamat 2012; Feng and Kamat 2013) and in-situ 

digital fabrication (Feng et al. 2014). 

1.2.4 Limitations of Previous Work 

The current state of knowledge has three critical limitations that preclude the application of pose 

estimation and scene understanding of construction machinery or devices to increase their level 

of autonomy: 

¶ Lack of Rapidly Reconfigurable and Sensor-Infrastructure-Independent Methods 

¶ Lack of Reliable Visual-Sensor-Based Methods in Complex Environments 

¶ Lack of Systematic Design and Error Analysis for Industrial Applications 

1.2.4.1 Lack of Rapidly Reconfigurable and Sensor-Infrastructure-Independent Methods 

Traditional non-visual-sensor-based methods have various limitations for large-scale mobile 

manipulator applications, including inadequate accuracy and robustness, high cost, slow 

reconfiguration, and infrastructure dependency. Within this type of methods, robotic total 

stations provide the most accurate (millimeter level) position estimation given a clear line of 

sight. However, it can only track one target's 3D position at a time, which makes real-time 6DOF 
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pose estimation intractable, in addition to its relative high cost and payload. Real time kinematic 

(RTK) GPS provides 3D position estimation at centimeter level accuracy, but it also has relative 

high cost and payload, and inherits the common GPS issues noted above (Akula et al. 2011). 

UWB methods provide sub-meter level position accuracy, but are expensive to setup the 

infrastructure. WLAN methods provide meter level position accuracy, but are slow to configure 

and calibrate the infrastructure. Due to low positioning accuracy, orientation estimation is not 

directly available using UWB or WLAN. Although IMU can be integrated for orientations, the 

aforementioned tracking drift and magnetic environment sensitivity issues make it less robust 

and appealing. Thus, it is clear that because of these limitations, non-visual-sensor-based 

methods are non-optimal for the pose estimation in guidance and control of large scale mobile 

manipulators. To overcome such limitations, visual-sensor-based methods are increasingly 

studied and have the potential to bridge these gaps. 

1.2.4.2 Lack of Reliable Visual-Sensor-Based Methods in Complex Environments 

Visual-sensor-based methods differ from other methods by the ability to instantaneously and 

non-intrusively capture massive amounts of information as images of the environment. Thus, 

these methods have the potential to interpret sensorsô surroundings and estimate sensorsô poses 

without any hardware infrastructure as needed in GPS (satellites), UWB, or WLAN, i.e., they are 

inherently infrastructure-independent. However, the challenge in these methods is mainly the 

robust and accurate interpretation of images. Current visual SLAM methods commonly assume 

that: 

1. The working environment has abundant visual features; and 

2. This environment is completely or at least mostly static in both appearance and geometric 

structure. 
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But these two assumptions do not normally hold in complex industrial environments. For 

example, on construction sites, workers and machines are constantly and frequently moving, 

which makes the sites highly dynamic instead of static. In addition, many of such surroundings 

are feature-less in terms of visual appearance, for instance, shipyards before finishing have 

almost the same appearance everywhere on the walls and ceilings. Moreover, repeated visual 

features commonly exist in such environments, which decreases the robustness of the 

interpretation and hence impede the pose estimation accuracy. Besides, there are also challenges 

such as the computational burden of real-time image interpretation and the lack of scale 

estimation in visual SLAM using a monocular camera (i.e., it estimates the camera's position in 

an undefined distance unit). Thus, it is clear that although the visual-sensor-based methods 

(especially visual SLAM) have the potential to overcome limitations of non-visual-sensor-based 

methods, presently they are still in the early research phase and not readily feasible for 

applications in complex industrial environments where construction machinery are operated. 

1.2.4.3 Lack of Systematic Design and Error Analysis for Industrial Applications 

It is not sufficient to only estimate the pose of a key component of a mobile manipulator. The 

accuracy and uncertainty of the estimated pose is critical for the following reasons. Firstly, the 

uncertainty provides a measure of the confidence level of the estimated pose, which is necessary 

for many downstream applications (e.g., deciding buffer size for collision avoidance). Secondly, 

it serves as a tool for evaluating the stability of the pose estimation system under different system 

configurations, and thus provides further guidance to avoid critical configurations that lead to 

unstable pose estimation. 

Current visual-sensor-based methods normally have neither systematic uncertainty analysis nor 

practical accuracy evaluation. Usually, visual SLAM methodsô position accuracies are from 
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comparisons with GPS positioning as ground truth, while the orientation accuracies are omitted 

or evaluated qualitatively. This is insufficient since the orientation accuracy also affects 

downstream decision-making and GPS might not provide accurate enough ground truth in urban 

areas, especially in GPS-denied regions. In addition, although a few marker-based methods 

applied Monte-Carlo simulation and made some empirical observations (Luhmann 2009), neither 

visual SLAM nor marker-based methods have systematic analysis in terms of the relationship 

between estimation stability and system configuration to improve pose estimation system design. 

1.3 Research Objectives 

As previously stated, the overall objective of this research was to develop, implement and 

validate novel computer vision based technologies to provide rapidly reconfigurable, 

infrastructure-independent, robust, reliable and accurate 6 DOF pose estimation, 3D scene 

reconstruction and understanding solutions, for various applications of ARC. The more specific 

objectives of this research were as follows. 

¶ Develop algorithms of real-time scene understanding in 3D point clouds, to enable more 

accurate 3D scene reconstruction, and to enable semantic recognition of different 

geometric elements (e.g., walls, floors, ceilings, stairs, etc.), thus facilitating as-built BIM 

generation and mobile robot perception. 

¶ Develop algorithms of accurate and robust real-time marker-based pose estimation, to 

serve as core algorithmic components in camera marker networks. 

¶ Develop algorithms of pose estimation using camera marker networks that has little or no 

hardware infrastructure dependency and thus can be rapidly applied in large scale 

applications. 
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¶ Design and implement generic software frameworks of the new methods for further 

industrial applications and prototypes. 

¶ Evaluate accuracy and precision of the new methods in virtual and real-world scenarios. 

¶ Validate effectiveness and investigate potential of the new methods through industrial 

application prototypes in robotic construction machinery, including autonomous in-situ 

robotic assembly, using vision-guided mobile manipulators to digitally fabricate curved 

walls more efficiently; as well as intelligent excavation monitoring using a camera 

marker network for articulated machine pose estimation to improve excavation safety and 

productivity. 

¶ Validate effectiveness of the new methods through applications in construction 

automation with human-in-the-loop, including indoor facility management using mobile 

devices and camera marker networks to increase inspection efficiency, as well as camera 

marker networks assisted 3D scene reconstruction and geometric element recognition for 

cost-efficient and more reliable and accurate as-built BIM generation. 

The end results of pursuing these objectives are three general scene understanding and pose 

estimation algorithms, corresponding software frameworks for both soft and hard ARC 

applications, and the four specific ARC applications mentioned above. 

1.4 Research Methodology 

The methodology of this research is first to investigate, adapt existing pose estimation and scene 

understanding algorithms and develop new ones when necessary, then with the help of the 

domain knowledge from construction and civil engineering, to apply those fundamental 

algorithms in appropriate ARC applications. Figure 1-1 above shows the overview of such 

algorithms-to-applications methodology in this research. 
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One of the advantages of this methodology is that due to consideration of the prior knowledge 

from the application domain, i.e., construction or civil engineering, existing general pose 

estimation or scene understanding algorithms can be modified and adapted as needed to better fit 

targeted application requirements. Especially when algorithms developed for general computer 

vision or robotics applications make assumptions that do not hold in construction scenarios, new 

algorithms are well-motivated for development. 

Another advantage of this methodology is that the new algorithms developed in this research are 

not limited to only construction or civil engineering, but applicable also in other engineering 

domains. For example, the fast plane extraction can accelerate scene understanding for general 

robotics problems such as point-plane based SLAM (Taguchi et al. 2013) or autonomous 

unmanned aerial vehicle (UAV) control. The marker based pose estimation can improve the 

stability of desktop AR. The camera marker network can also be applied for jobsite machinery 

productivity analysis. Thus, both ARC community and general computer vision and robotics 

communities can benefit from these algorithms. 

1.5 Dissertation Outline 

This dissertation is a compilation of peer-reviewed scientific manuscripts which document this 

research of the development of novel scene understanding and pose estimation algorithms as 

well as the designing and implementation of ARC applications adopting those algorithms. 

There are mainly three parts in this dissertation. Part I, including chapter 2, 3 and 4, describe the 

general scene understanding and pose estimation algorithms. Chapter 2 describes a novel scene 

understanding algorithm that extracts planes from depth images in real-time. Chapter 3 describes 

a novel marker based pose estimation algorithm that enables fast, accurate and robust 6DOF pose 
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estimation between a camera and a planar marker. Chapter 4 describes the abstract model of pose 

estimation using a network of cameras and markers and corresponding mathematical theories for 

pose estimation and error analysis. 

Part II, including chapters 5 and 6, describe two applications of pose estimation in robotic 

construction machinery. Chapter 5 describes an in-situ digital assembly application using a 

vision-guided mobile robotic manipulator. Chapter 6 describes an articulated machine pose 

estimation application using a camera marker network for excavation monitoring and guidance. 

Part III, including chapters 7 and 8, describe two construction automation applications with 

human-in-the-loop. Chapter 7 describes indoor facility management applications using a 

dynamic camera marker network using markers as spatial indices to link physical locations and 

associated information. Chapter 8 describes a reliable and accurate as-built BIM generation 

application using an RGBD camera marker network to both reconstruct 3D point clouds and 

recognize plane based 3D parametric models. 

The dissertation concludes with Chapter 9, which summarizes the significance and contributions 

of this research, and discusses future work directions. Since each chapter from 2 to 8 is written as 

a self-contained paper, some information appears in multiple chapters for the sake of 

completeness. All chapters have been written such that they can be easily understood and 

successfully replicated by a technically literate audience from diverse domains with basic 

understandings of 3D computer vision and robotics. 
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Part I: General Scene Understanding and Pose Estimation Algorithms 

"The world is flat."ðThomas Friedman 

This part includes three fundamental algorithms centered on planes addressing scene 

understanding and pose estimation problems. In many cases 3D point clouds of the environment 

are not enough for robotics applications, since they are generally noisy, redundant, and without 

explicit semantics of the scene. For compact and semantic 3D modeling, fitting primitives in 3D 

point clouds has attracted many research interests. In particular, planes are one of the most 

important primitives, since man-made structures consist of many planes. Thus Chapter 2 

describes a fast plane extraction algorithm from depth images. 

Planes not only enable compact 3D modeling, but can also facilitate 6DOF pose estimation. This 

is because the relative pose between a camera plane and a plane with a marker is encoded in a 

so-called homography matrix, which can be estimated given geometric correspondences between 

the two planes. Chapter 3 investigated two major groups of methods to establish or maintain 

correspondences and developed a more accurate and robust pose estimation algorithm. 

With more markers or cameras in large scale, an observation network is naturally formed. If  

depth cameras are used, 3D planes become a new kind of observation. Chapter 4 abstracted such 

networks in a unified framework, developed general solution and performed systematic error 

analysis. 
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Chapter 2 

Fast Plane Extraction in Organized Point Clouds 

"Divide each difficulty into as many parts as is feasible and necessary to resolve it." 

ðRené Descartes 

2.1 Intr oduction 

As low-cost depth cameras and 3D sensors have emerged in the market, they have become a 

popular choice in various robotics and computer vision applications. 3D point clouds obtained by 

such sensors are generally noisy and redundant, and do not provide semantics of the scene. For 

compact and semantic modeling of 3D scenes, primitive fitting to the 3D point clouds has 

attracted a lot of research interests. In particular, planes are one of the most important primitives, 

since man-made structures mainly consist of planes. 

In this chapter, an efficient plane extraction algorithm applicable to organized point clouds, such 

as depth maps obtained by Kinect sensors, is presented. This algorithm first constructs a graph 

by dividing a point cloud into several non-overlapped regions with a uniform size in the image 

space. The algorithm then performs a bottom-up, agglomerative hierarchical clustering (AHC) 

on the graph: It repeats (1) finding the region that has the minimum plane fitting mean squared 

error (MSE) and (2) merging it with one of its neighbors such that the merge results in the 

minimum plane fitting MSE. It is shown that the clustering process can be done with the 

complexity log-linear in the number of initial nodes, enabling real-time plane extraction. To 

refine the boundaries of the clustered regions, the clustering process is followed by pixel-wise 
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region growing. In experiments, this algorithm is compared with state-of-the-art algorithms. This 

algorithm achieves real-time performance (runs over 35 Hz) for 640 by 480 pixel depth maps, 

while providing the accuracy comparable to the state-of-the-art algorithms. Some example 

results are shown in Figure 2-1. Extracted planes are superimposed with different colors on the 

RGB image (black means non-planar region). White dash lines show the segmentation 

boundaries before the region-grow-based refinement. Initial node size of 10 by 10 detects most 

of the planes in the scene (top-left), whose 3D view is shown (bottom-left). Initial node size of 4 

by 4 reveals more segments in a smaller scale such as stairs and table leg (top-right), while that 

of 20 by 20 focuses on major large planar structures such as floors and walls (bottom-right). 

 

Figure 2-1: Plane extraction results generated with different initial node sizes. 

2.1.1 Contributions 

There are following contributions for this chapter: 

¶ An efficient plane extraction algorithm based on agglomerative clustering is presented. 

¶ The complexity of the clustering algorithm is analyzed and shown to be log-linear in the 

number of initial nodes. 
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¶ Real-time performance is demonstrated with the accuracy comparable to state-of-the-art 

algorithms. 

The following sections of this chapter will explain the details of this proposed Plane Extraction 

using Agglomerative Clustering (dubbed as PEAC). Section 2.2 will explain the related work on 

plane extraction, and related applications. Section 2.3 will give an overview of PEAC including 

an analogy to line segment extraction and the differences when generalizing to three dimensions. 

Section 2.4 and 2.5 will explain the two main phases of PEAC. The PEAC's performance is then 

demonstrated by various experiments in section 2.6. Finally conclusions are drawn in section 2.7. 

2.2 Related Work  

2.2.1 Plane Extraction 

Several different algorithms have been proposed for plane extraction from 3D point clouds. 

RANSAC-based methods (Schnabel et al. 2007) have been widely used. These methods usually 

follow the paradigm of iteratively applying RANSAC algorithm on the data while removing 

inliers corresponding to the currently found plane instance. Since RANSAC requires relatively 

long computation time for random plane model selection and comparison, several different 

variants were developed. Oehler et al. (2011) performed Hough transformation and connected 

component analysis on the point cloud first as pre-segmentation and then applied RANSAC to 

refine each of the resulting "surfels" (2s per 640 by 480 points). Several algorithms (Taguchi et 

al. 2013; Hulik et al. 2012; Lee et al. 2012) applied RANSAC on local regions of the point cloud 

(which decreases the data size considered in each RANSAC run to increase speed) and then grew 

the region from the locally found plane to the whole point cloud (0.2s (Taguchi et al. 2013) or 

0.1s (Hulik et al. 2012) per 640 by 480 points; 0.03s (Lee et al. 2012) per 320 by 240 points). 
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Region-grow-based methods are another popular choice. Hähnel et al. (2003) and Poppinga et al. 

(2008) grew points by both point-plane distance threshold and MSE threshold (0.2s per 25,344 

points). Holz et al. (2012) grew points by their surface normal deviation (0.5s per 640 by 480 

points), which requires per-point normal estimation. A similar but much slower variant is voxel 

grow (Deschaud and Goulette 2010). Instead of growing points, Geogiev et al. (2011) first 

extracted line segments from each scan line of the data and then grew the line segments across 

scan lines (0.05s per 18,100 points in MATLAB). 

There are other methods which do not belong to the two groups. Holz et al. (2011) first clustered 

the point cloud in the normal space and further clustered each group by its distance to the origin 

(0.14s per 640 by 480 points). To avoid per-point normal estimation, Enjarini et al. (2012) 

designed the gradient of depth feature for plane segmentation, which could be rapidly computed. 

Graph-based segmentation using self-adaptive threshold was also used (Strom et al. 2010; Wang 

et al. 2013) (0.17s per 148,500 points in Strom's paper). Although the PEAC proposed in this 

chapter also uses a graph to represent data relation, it differs from the previous methods as 

follows: 1) no RGB information is used; 2) no per-point normal estimation is required; and more 

importantly, 3) dynamic edge weights are used instead of static ones which fix the merging order 

as in (Strom et al. 2010). 

2.2.2 Applications 

Planes have been used in various applications in robotics, computer vision, and 3D modeling. 

Compact and semantic modeling of scenes provided by planes is useful in indoor and outdoor 3D 

reconstruction, visualization, and Building Information Modeling (BIM) (Zhang et al. 2012). 

Extracting a major plane is a common strategy for table-top manipulation (Holz et al. 2011), 

because it helps segment objects placed on the plane. Planes have been also used for SLAM 
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(Weingarten and Siegwart 2006; Pathak et al. 2010; Trevor et al. 2012) and place recognition 

(Fernandez-Moral et al. 2013) systems as landmarks, because planes are more robust to noise 

and more discriminative than points. However, at least three planes whose normals span 3  are 

required to compute the 6 DOF camera pose. To avoid the degeneracy due to the insufficient 

number of planes, Taguchi et al. (2013) used both points and planes as landmarks in their SLAM 

system. Salas-Moreno et al.'s SLAM system (2013) that uses objects as landmarks extracted a 

ground plane and used it as a soft constraint to align the poses of objects with respect to the 

ground plane. All of the above works can benefit from the fast plane extraction in this chapter. 

2.3 Algorithm Overview  

Figure 2-2 illustrates how PEAC processes each frame of an organized point cloud. Each frame 

of an organized point cloud is processed from left to right. (a) shows the graph initialization with 

each node colored by its normal; black dot and line showing graph node and edge; red óxô, black 

óoô, and red dot showing node rejected by depth discontinuity, missing data, and too large plane 

fitting MSE, respectively. (b) and (c) show the two core operations of the AHC. Regions with 

random colors in (b) and (c) show graph nodes merged at least once. Black lines in (c) show all 

edges coming out from the node A, in which the thick line shows the edge to the node B that 

gives the minimum plane fitting MSE when merging the node A with one of its neighbors. 

Colored regions in (d) show the extracted coarse planes, which are finally refined in (e) if 

required by the application. 

An organized point cloud is defined to be a set of 2D indexed 3D points 

, , , ,{ ( , , ) }i j i j i j i jx y z= =p
T , 1, , , 1, ,i j= =M N  where the 2D indices ( , )i j  and ( 1, 1)i j° ° 

reflect the 3D proximity relationship between points ,i jp  and 1, 1i j° °p  if they lie on the same 
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surface (this index space is dubbed as image space). Usually it can be obtained from a depth map 

produced by devices such as a Kinect sensor, time-of-flight camera, structured light scanning 

system, and even rotating the scanning plane of a laser range finder. 

 

Figure 2-2: The PEAC algorithm overview. 

2.3.1 Line Segment Extraction as an Analogy 

Before moving into the details of PEAC, a line segment extraction algorithm called line 

regression is briefly discussed, as summarized in (Nguyen et al. 2005) and implemented in April 

Robotics Toolkit (Olson 2010). It is widely used for extracting line features from 2D point 

sequences obtained from a laser range finder, and inspired us to generalize its idea to 3D case for 

fast plane extraction. As illustrated in Figure 2-3 (blue dots show the 2D points; circles labeled 

with letters show the nodes in a linked list; brackets show the groups of points represented by the 

nodes; thick line indicates that merging node g  with its left neighbor ef  gives a smaller line 

fitting MSE than merging it with its right neighbor h ), every W  consecutive points ( 3=W  in 

this figure) in the sequence are grouped into nodes
2
, forming a double linked list. Then AHC is 

performed on this linked list by repeating (1) finding the node g  with the minimum line fitting 

MSE and (2) merging this node g  with either its left or right neighbor that gives the minimum 

merging MSE. If the minimum merging MSE is larger than a predefined threshold, which can 

                                                 
2
 Note that "node" and "segment" are used interchangeably to represent a set of data points. 
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usually be decided by the noise characteristics of the sensor, then the merging is canceled and the 

node g  can be extracted as a line segment. When using a binary heap to find the minimum MSE 

node, log-linear time complexity ( log )O n n  can be achieved for this algorithm, where n  is the 

number of points in the sequence. Note that by applying the idea of integral images, as used in 

(Holzer et al. 2012; Holz et al. 2011), merging two nodes and calculating the resulting line fitting 

MSE become constant time operations. 

 

Figure 2-3: Line regression algorithm. 

2.3.2 Differences When Generalizing to 3D 

Inspired by the use of point's neighborhood information given by the point's order of the 

sequence, one wish to generalize the 2D line regression to 3D plane extraction in an organized 

point cloud, where the neighborhood information is stored in the 2D indices. However, this 

generalization is nontrivial, because of the following two major differences. 

2.3.2.1 Non-Overlapping Nodes 

As opposed to the line regression, initial nodes (and thus any two nodes during/after merging) 

should have no identical points, i.e., for any two nodes ,s tË , s tÆ =Å. This 
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requirement is due to the fact that after several merging steps, the 3D points belonging to a 

certain node s  will form an irregular shape instead of maintaining its initial rectangular shape in 

the image space, as shown in Figure 2-2(b). Thus, if allowing different nodes to have identical 

points, it is difficult to efficiently handle the overlapping points when merging two nodes, even 

with the help of integral images. While in the line regression, merging two neighboring line 

segments will still result in a line segment represented by a start and end index in the point 

sequence, which makes overlapping nodes feasible. It is important to notice that the overlapping 

nodes enable the line regression algorithm to automatically split line segments at their 

boundaries; since nodes containing points at different line segments tend to have larger line 

fitting MSE than others (e.g., nodes c , d , and h  in Figure 2-3), their merging attempts will be 

delayed and finally rejected. The non-overlapping requirement in PEAC results in losing that 

advantage of automatically detecting boundaries of planes. Section 2.4.1 will describe how to 

overcome the disadvantage by removing bad nodes in the initialization step. Section 2.5 will also 

describe a pixel-wise region growing algorithm to refine the boundaries of planes. 

2.3.2.2 Number of Merging Attempts 

In the line regression, merging a node with its neighbor is a constant time operation with at most 

two merging attempts, either to its left or right neighbor. In this generalized case, the number of 

merging attempts is larger, since nodes are initially connected to at most 4 neighbors to form a 

graph, and after several merging steps, they can be connected to a larger number of neighbors. In 

section 2.4.2, the average number of merging attempts in PEAC will be experimentally analyzed 

and shown that it stays small in practice; therefore, the merging step can be done in a constant 

time, resulting in the complexity of ( log )O n n  similar to the line regression. 
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2.4 Fast Coarse Segmentation 

The PEAC algorithm consists of three major steps, as shown in Figure 2-2 and Algorithm 2ï1: 

The algorithm first initializes a graph and then performs AHC for extracting coarse planes, 

which are finally refined. If the application only requires rough segmentation of planar regions, 

e.g., detecting objects in a point cloud, then the final refinement step may be skipped, which 

could increase the frame rate to more than 50Hz for 640 by 480 points. 

First the notations are clarified.  denotes a complete frame of an organized point cloud of M  

rows and N  columns. ,  represent coarse and refined segmentation respectively, i.e., each 

element k / l  of /  is a segmentða set of 3D points 
,i jp . Meanwhile , ¡P P are sets of 

plane equations corresponding to , , respectively. Also note that each node v  of a graph G  is 

a set of 3D points and each undirected edge uv denotes the neighborhood of segments ,u v  in 

the image space. 

2.4.1 Graph Initialization  

As mentioned in section 2.3.2, PEAC has a requirement of non-overlapping node initialization, 

represented in lines 3 to 5 of Algorithm 2ï2. This step uniformly divides the point cloud into a 

set of initial nodes of the size ³H W  in the image space. The requirement causes PEAC to lose 

Algorithm 2ï1: Fast Plane Extraction. 
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function

return  
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the advantage of automatically detecting boundaries of planes. To properly segment planes using 

AHC under this restriction, the following types of nodes and corresponding edges are removed 

from the graph, which is illustrated using an example in Figure 2-4 (óoô shows nodes with 

missing data point; óxô shows nodes with depth discontinuity; black dot shows nodes with too 

large plane fitting MSE; and óBô shows nodes located at the boundary region between two 

connected planes): 

1. Nodes Having High MSE: Non-planar regions lead to high plane fitting MSE, which are 

simply removed. 

2. Nodes Containing Missing Data: Because of the limitation of the sensor, some regions 

of the scene might not be sensed correctly, leading to missing data (e.g., the glass 

window behind the shutter). 

3. Nodes Containing Depth Discontinuities: These nodes contain two sets of points lying 

on two surfaces that are not close in 3D but are close in the image space (usually one 

surface partially occludes the other, e.g., the monitor occludes the wall behind). If 

principle component analysis (PCA) is performed on points belonging to this node for 

plane fitting, the fitted plane will be nearly parallel to the line-of-sight direction and thus 

still have a small MSE. Merging this "outlier" node with its neighbor node will have bad 

effect on the plane fitting result because of the well-known issue of over-weighting 

outliers in least-squares methods. 

4. Nodes at Boundary Between Two Planes: These nodes contain two sets of points close 

to each other in 3D but lying on two difference planes (e.g., the corner of the room), 

which will decrease the plane fitting accuracy if they are merged to one of the planes. 
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The functions RejectNode and RejectEdge in Algorithm 2ï2 are designed to reduce the influence 

of these four types of bad initial nodes. The RejectNode function removes the first three types of 

Algorithm 2ï2: Graph Initialization. 
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bad nodes (and thus the points inside) from the graph, while the RejectEdge function is for 

mitigating influence of the fourth type of bad nodes. 

 

Figure 2-4: Examples of bad initial nodes. 

It is interesting to note that the gain in this non-overlapping "disadvantage" is the avoidance of 

per-point normal estimation. This initialization step can be seen as treating all points inside a 

node as if they have a common plane normal. This is an important reason for the speed 

improvement of this method compared to other state-of-the-art methods which often spend a 

large portion of time in the normal estimation for each point. 

2.4.2 Agglomerative Hierarchical Clustering 

As shown in Algorithm 2ï3, the AHC in this PEAC algorithm is almost the same as that in the 

line regression, except that it is operated on a graph instead of a double linked list. First a min-

heap data structure is built for efficiently finding the node with the minimum plane fitting MSE. 

It then repeats finding a node v  that currently has the minimum plane fitting MSE among all 

nodes in the graph and merging it with one of its neighbor nodes bestu  that results in the 

minimum merging MSE (recall that each node in the graph is a set of points; so the merging 
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MSE is the plane fitting MSE of the union of the two sets 
mergeu ). If this minimum merging MSE 

exceeds some predefined threshold MSET  (not necessarily a fixed parameter as explained later in 

section 2.4.3), then a plane segment v  is found and extracted from the graph; otherwise the 

merged node 
mergeu  is added back to the graph by edge contraction between v  and bestu . 

Algorithm 2ï3: Agglomerative Hierarchical Clustering. 
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Figure 2-5: Average number of merging tests per frame. 

As mentioned in section 2.3.2, PEAC requires a larger number of merging attempts than the line 

regression. However, it turns out to be still quite efficient and the clustering process can be done 

in ( log )O n n  time in practice. Figure 2-5 experimentally shows the average number of merging 

attempts during AHC per frame (during 2102 frames of 640 by 480 Kinect point clouds). As can 

be seen, irrespective of the initial node size (and thus the initial number of nodes), this number 

stays small. This may be explained by the fact that the graph constructed from Algorithm 2ï3 is 

a planar graph. From graph theory one knows that the average node degree of a planar graph is 

strictly less than 6. Since the initial graph is planar and merging nodes by edge contraction does 

not change its planarity, during the whole process of AHC the average node degree is always less 

than 6. Also, the plane fitting MSE of a large segment is larger than that of a smaller segment, if 

errors are drawn from the same Gaussian distribution. Thus the AHC process tends to balance 

the size of all the segments, because it always tries to grow the size of the node with the 

minimum plane fitting MSE and then switches to other smaller nodes. Therefore, it will not stick 

to growing a large node (which implies large node degree since it has large boundary), otherwise 

the average number of merging tests will be much larger. Based on this observation, lines 6 to 20 
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in Algorithm 2ï3 can be done in a constant time irrespective of the initial number of nodes. The 

( log )O n n  complexity only arises from maintaining the min-heap structure. 

2.4.3 Implementation Details 

There are several implementation details to improve the speed and accuracy for this fast coarse 

segmentation: 

1. A disjoint set data structure is used for tracking the point membership of each initial node 

,i jv  during the node merging in AHC. 

2. As in the line regression, all nodes maintain the first and second order statistics of all the 

belonging points, i.e., 2 2 2
, , , , , , , , , , , ,, , , , , , , ,i j i j i j i j i j i j i j i j i j i j i j i jx y z x y z x y y z z xä ä ä ä ä ä ä ä ä, 

such that merging two nodes and calculating its plane equation and MSE through PCA is 

a constant time operation. 

3. The function for determining the depth discontinuity in RejectNode of Algorithm 2ï2 

depends on sensor noise characteristics. For Kinect sensors, the following function is 

used as suggested in (Holzer et al. 2012) and Point Cloud Library (PCL)
3
: 

 
1 | | 2 (| | 0.5)

( , )
0 otherwise

a b a
a b

z z z
f

a- > +ë
=ì
í

p p  (2.1) 

The unit of z here (and throughout this chapter) is millimeter and the parameter a was 

used between 0.01 and 0.02. 

4. The threshold MSET  for extracting segments is also sensor dependent. For Kinect, the 

following equation adapted from (Khoshelham and Elberink 2012) is used: 

                                                 
3
 http://www.pointclouds.org 

http://www.pointclouds.org/
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 2 2( )zs= +MSET  (2.2) 

where 61.6 10s -= ³  and  between 3 and 8 is used. Similarly, ANGT  can also be 

changed depending on depth. 

5. The initial node should be close to a square shape in the image space, i.e., ºW H. If a 

strip-like shape is used, either WḻH  (e.g., 20, 2= =W H ) or HḻW , the PCA on the 

initial node will result in wrong plane normal direction which is usually almost 

perpendicular to the line-of-sight direction. Consequently the following AHC will fail to 

segment planes correctly. 

2.5 Segmentation Refinement 

For many applications, the coarse plane segmentation obtained in the previous section might not 

be enough, especially if the applications use the boundaries of planes (Pathak et al. 2010; 

Fernandez-Moral et al. 2013) or require higher accuracy of the estimated plane equations. Thus 

refinement on the coarse segmentation  is performed. 

Three types of artifacts are expected in the coarse segmentation, as shown in Figure 2-6 (where 

the bottom row shows the corresponding refined segmentations): 

1. Sawtooth: Usually at the boundary between two connected planes (e.g., purple and 

yellow segments of the top-left part). 

2. Unused Data Points: Usually at the boundary of occlusion or missing data node (e.g., 

between lamp and wall of the top-right part). 

3. Over-Segmentation: Usually between two object's occlusion boundary (e.g., purple and 

red segments of the top-right part). 
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Algorithm 2ï4: Segmentation Refinement. 
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Sawtooth artifacts cause small amount of outliers to be included in estimation, whereas unused 

data points and over-segmentation cause less inliers to be used. All of the artifacts produce 

inaccurate plane boundaries and slightly decrease the accuracy of the estimated plane equation. 

 

Figure 2-6: Artifacts of coarse segmentations and corresponding refinement. 

The solution to them is described in Algorithm 2ï4. Since sawtooth artifacts are almost always 

observed at the boundary regions of , erosion of boundary regions of each segment can 

effectively eliminate them (lines 5 to 12). Then pixel-wise region growing is started from all new 

boundary points to assign all unused data points to its closest plane that is extracted previously 

(lines 13 to 27). During the region growing the 4-connected neighborhoods are discovered for 

each segment k , which form a new graph G¡. Finally applying AHC again on this very small 

graph (usually less than 30 nodes) fixes the over-segmentation artifact (line 28). 

2.6 Experiments and Discussion 

To comprehensively evaluate PEAC's performance in terms of robustness, time, and accuracy, 

three sets of experiments was conducted, as described in the following subsections. This 
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algorithm was implemented in C/C++. For PCA, the efficient 3 by 3 matrix eigenvalue 

decomposition routine described in (Kopp 2008)
4
 was used. All experiments were conducted on 

an ordinary laptop with Intel Core i7-2760QM CPU of 2.4GHz and RAM of 8GB. No multi-

threading or any other parallelism such as OpenMP or GPU was used in this implementation. 

2.6.1 Simulated Data 

Similar to the influence of noise simulation in (Georgiev et al. 2011), PEAC's robustness was 

tested on a simulated depth map with 20 different levels of uniformly distributed noise of 

magnitude 10 , 0, ,20E l l= = »  (noise unit: mm; ground truth depth ranges from 1396mm to 

3704mm). After the noise was added to the depth map, it was converted to an organized point 

cloud and fed into the algorithm ( 220, 50= = =MSEW H T ). As shown in Figure 2-7, PEAC can 

reliably detect all of the 4 planes for 0, ,14l = » , and starts to over-segment after that. Yet even 

when E=200mm PEAC was able to detect major planes in the scene. 

 

Figure 2-7: Plane extraction results on simulated data. 

                                                 
4
 Implementation available for download at http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/ 

http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/



















































































































































































































































































































